International society of blood transfusion working party on red cell immunogenetics and terminology: report of the Seoul and London meetings

1Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Lund, Sweden
2University of Campinas/Hemocentro, Campinas, Brazil
3Jiangsu Province Blood Center, Nanjing, China
4Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
5Blood Center of Wisconsin, Milwaukee, WI, USA
6Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
7Blutspende Zurich, Zurich, Switzerland
8Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
9Australasian Red Cross Blood Services, Brisbane, Australia
10American Red Cross Blood Services, Philadelphia, PA, USA
11New York Blood Center, New York, NY, USA
12Grifols, San Marcos, TX, USA
13Banc de Sang i Teixits, Barcelona, Spain
14Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
15Institut National de la Transfusion Sanguine, Département Centre National de Référence pour les Groupes Sanguins, Inserm UMR_S1134, Paris, France
16Sanquin Research at CLB, Amsterdam, The Netherlands
17Osaka Red Cross Blood Center, Osaka, Japan
18International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
19Red Cross Blood Service NSTOB, Springe, Germany
20Blood Bank, Hospital Sirio-Libanes, Sao Paulo, Brazil
21NBGRL Magen David Adom, Ramat Gan, Israel

The Working Party has met twice since the last report: in Seoul, South Korea 2014, and in London, UK 2015, both in association with the International Society of Blood Transfusion (ISBT) Congress. As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. Eleven new blood group antigens were added to seven blood group systems. This brings the current total of blood group antigens recognized by the ISBT to 346, of which 308 are clustered within 36 blood groups systems. The remaining 38 antigens are currently unassigned to a known blood group system.

Key words: blood groups, genetics, terminology

Correspondence: Jill Storry, Clinical Immunology & Transfusion Medicine, University and Regional Laboratories, Klinikgatan 21, SE-22185 Lund, Sweden.
E-mail: jill.storry@med.lu.se

The Working Party has met twice since the last report: in Seoul, South Korea 2014, and in London, UK 2015, both in association with the International Society of Blood Transfusion (ISBT) Congress. As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed.

A total of seven blood group antigens were added to four of the current blood group systems (Table 1). Three new blood group systems were created, one de novo (CD59), and two others Vel (VEL) and Augustine (AUG), elevating the previously homeless high-incidence antigens Vel and At\(^{a}\), respectively. This brings the current total of...
recognized blood group antigens to 346, of which 308 are clustered within 36 blood group systems. Thus, there remain 38 serologically defined antigens that have not been assigned to a blood group system as yet. Six of those are in the high prevalence series (901), 17 in the low prevalence series (700) and a further 15 reside in one of six collections (the 200 series).

New blood group antigens

System 2: MNS

Two antigens have been added to the MNS system. Exome sequence analysis of samples from SARA+ and SARA− family members [1] identified a single nucleotide change c.240G>T in exon 3 of GYPΔ, which changes p.Arg80Ser. Sequence analysis of unrelated SARA+ samples confirmed the causative polymorphism [2]. The provisionally assigned number MNS47 was ratified by the working party and the low-prevalence series number 700052 has been made obsolete.

System 5: Lutheran

A new high-prevalence antigen, LUIT was assigned to the Lutheran blood group system based on the serology (LU23) and the identification of two changes in LU: sequencing showed two novel homozygous mutations, one in exon 4, c.469G>A (p.Gly157Arg), and one in exon 10, c.1289C>T (p.Thr430Ile). [6]. There was insufficient molecular characterization of the GP.Kip and GP.Yak hybrid glycoporphins that showed that they were one and the same and are encoded by the same GYP(B-A-B) hybrid that produces Mur, Hil, MUT, MINY, as well as the antigen KIPP [3, 4]. KIPP is recognized by the anti-Hop+Nob sera, Anek and Raddon, but not by antisera specific for the Hop or Nob antigens; as well as by the original anti-Kipp serum [5]. The resulting GP(B-A-B) hybrid retains p.Ser51, which distinguishes this hybrid protein from other known GP(B-A-B) hybrids, which have p.Tyr51. The provisionally assigned number MNS48 was ratified by the working party.

Table 1 New antigens added to blood group systems

<table>
<thead>
<tr>
<th>Blood group system</th>
<th>Antigen number</th>
<th>Alt. name</th>
<th>Prevalence</th>
<th>Molecular basis</th>
<th>Protein change</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNS</td>
<td>MNS47</td>
<td>SARA</td>
<td>Low</td>
<td>GYPΔ c.240G>T</td>
<td>p.Arg80Ser</td>
</tr>
<tr>
<td>MNS</td>
<td>MNS48</td>
<td>KIPP</td>
<td>Low</td>
<td>GYP(B-A-B) hybrid</td>
<td>p.Ser51*</td>
</tr>
<tr>
<td>LU</td>
<td>LU23</td>
<td>LUIT</td>
<td>High</td>
<td>LU c.469G>A, 1289C>T</td>
<td>p.Gly157Arg, p.Thr430Ile</td>
</tr>
<tr>
<td>DO</td>
<td>DO9</td>
<td>DOLC</td>
<td>High</td>
<td>ART4 c.566C>T</td>
<td>p.Thr189Met</td>
</tr>
<tr>
<td>DO</td>
<td>DO10</td>
<td>DODE</td>
<td>High</td>
<td>ART4 c.405C>A</td>
<td>p.Asp135Glu</td>
</tr>
<tr>
<td>GLOB</td>
<td>GLOB2</td>
<td>PX2</td>
<td>Highb</td>
<td>B3GALNT1</td>
<td></td>
</tr>
<tr>
<td>Vel</td>
<td>VEL1</td>
<td>Vel</td>
<td>High</td>
<td>SMIM1 c.46_80delGTACGGCTAGGGGTGT</td>
<td>p.Ser22Glnfs*270</td>
</tr>
<tr>
<td>CD59</td>
<td>CD59.1</td>
<td>–</td>
<td>High</td>
<td>CD59 c.146delA</td>
<td>p.Asp49Valfs*31</td>
</tr>
<tr>
<td>AUG</td>
<td>AUG1</td>
<td>–</td>
<td>High</td>
<td>EN1 c.589 + 1G>C</td>
<td>p.Ser197fs</td>
</tr>
<tr>
<td>AUG</td>
<td>AUG2</td>
<td>At*</td>
<td>High</td>
<td>EN1 c.1171G>A</td>
<td>p.Glu391Lys</td>
</tr>
</tbody>
</table>

aDistinguishes this protein from other known GP(B-A-B) hybrids.

bAlthough PX2 is a product of β1,3GalNAc-T1 and therefore present on RBCs of common phenotype, it is absent from RBCs of P1 and P2 phenotypes whilst highly expressed on RBCs of the p phenotype.

Thus, all mutations causing the of P1 and P2 phenotypes also cause lack of PX2.

Table 2 New blood group systems

<table>
<thead>
<tr>
<th>Blood group system</th>
<th>Symbol</th>
<th>Number</th>
<th>Reference sequence</th>
<th>Number of antigens</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vel</td>
<td>VEL</td>
<td>034</td>
<td>NM_001163724</td>
<td>1</td>
<td>Storry, Joud et al.[11], Cvejic et al.[12], Bal lif et al. [13]</td>
</tr>
<tr>
<td>CD59</td>
<td>CD59</td>
<td>035</td>
<td>NM_0006116.5</td>
<td>1</td>
<td>Anilker et al. [19], Hochsmann et al. [20]</td>
</tr>
<tr>
<td>Augustine</td>
<td>AUG</td>
<td>036</td>
<td>NM_001078175.2</td>
<td>2</td>
<td>Daniels et al.[21]</td>
</tr>
</tbody>
</table>
New blood group systems

System 34: VEL

A founder mutation in the previously undescribed small integral protein 1 (SMIM1) gene, c.64_80delGTCAGCC-TAGGGGCTGT, was identified as the primary molecular basis underlying the Vel phenotype [11-13]. The presence or absence of Vel antigen was directly correlated to the presence or absence of SMIM1, a single-pass integral membrane protein. The considerable variation in antigen strength was shown not only to correlate with zygosity for the wild-type SMIM1 but could also be affected by two rare missense mutations, c.152T>A and c.152T>G (encoding p.Met51Lys and p.Met51Arg, respectively). Furthermore, a single nucleotide polymorphism in intron 2 (rs11755560) situated in a GATA-1 binding site also considerably influenced Vel antigen expression [12, 14, 15].

Based on the molecular and biochemical evidence, Vel was assigned blood group system status (034); system name: Vel; symbol: VEL, antigen: VEL1 (034001). There was no molecular evidence that ABTI was dependent on SMIM1 for expression, despite historical serological evidence of a phenotypic association [16]. As a consequence, collection 200212 was made obsolete and ABTI was returned to the 901 series and reassigned its old number (901015).

As yet, the function of SMIM1 remains unknown; however, elegant work by Arnaud and colleagues has suggested the protein to be a type 2 integral membrane protein [17].

System 35: CD59

Based on the publication of a case report in which a young patient with a CD59 deficiency produced an alloantibody specific for CD59, blood group status was unanimously assigned [18-20]. Both the blood group system and symbol are CD59 (035), and the antigen defined by the antibody maker in this case report has been named CD59.1.

System 36: AUG

The erythrocyte protein, equilibrative nucleoside transporter 1 (ENT1), was identified as the carrier of the At^a antigen. Daniels and colleagues showed that the At(a−) phenotype in individuals of African origin is defined by an amino acid polymorphism in the ENT1 protein (c.1171G>A; p.Glu391Lys) and that the At(a−) members of a family affected by bone malformation lacked the protein due to an inactivating mutation in the ENT1 gene: c.589+1G>C [21]. Based on the evidence, and
following a discussion on names, the blood group system Augustine (symbol AUG) was created [036]. The antigen defined by the antibody produced by the null phenotype was named AUG1, and the antigen defined by the amino acid Glu391 (At*) was named AUG2.

Gene terminology

The Working Party continues to update the allele nomenclature tables and these can be found on the ISBT website. (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/) We anticipate an expansion of these tables, and a more detailed monograph on guidelines and usage is planned.

Acknowledgements

Since the last report [22], Dr Philippe Rouger and Dr Lung-Chi Yu resigned from the Working Party. We sincerely thank them for their helpful contributions during the years. We also note with sadness the passing of our dear colleague Professor George Garratty, who was an active member of the Working Party to the end. As members of the Working Party, all authors have contributed equally to the discussion and conclusions drawn in this paper. CAH is funded by the Australian Red Cross Blood Service and acknowledges the Australian Governments for funding the Blood Service for provision of blood, blood products and services to the Australian Community.

Conflict of interests

The authors declare no conflict of interest.

References

16 Banks J, Poole J, Das Gupta C, et al.: Two new cases of anti-ABTI showing an association between ABTI and Vel. Vox Sang 2004; 87:38
17 Arnault L, Kelley LP, Helias V, et al.: SMIM1 is a type II transmembrane phosphoprotein and displays the Vel blood group antigen at its carboxyl-terminus. FEBS Lett 2015; 589:3624–3630

Dr Jill R Storry (Chair): Dept. of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Lund, Sweden. jill.storry@med.lu.se
Prof Dr Lilian Castilho: University of Campinas/Hemocentro, Campinas, Brazil. castilho@unicamp.br
Dr Qing Chen: Jiangsu Province Blood Center, Nanjing, Jiangsu, China. qngchen@gmail.com
Dr Geoff L Daniels: International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK. geoff.daniels.bris@outlook.com
Prof Dr Masja de Haas: Sanquin Blood Supply Foundation, Amsterdam, The Netherlands. m.dehaas@sanquin.nl
Dr Greg Denomme: Blood Center of Wisconsin, Milwaukee, WI, USA. greg.denomme@bcw.edu
Prof Dr Bill (W)A Flegel: Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA. flegelwa@cc.nih.gov
Dr Christoph Gassner: Blutspende Zurich, Zurich, Switzerland. c.gassner@zhbsd.ch
Dr Catherine Hyland: Australian Red Cross Blood Services, Brisbane, Australia. chyland@archs.redcross.org.au
Dr Margaret Keller: American Red Cross Blood Services, Philadelphia, PA, USA. Margaret.Keller@redcross.org
Ms Christine Lomas Francis: New York Blood Center, New York, NY, USA. cfrancis@nybloodcenter.org
Dr Joann M Moulds: GRIFOLS Immunohematology Center, 201 Carlson Circle, San Marcos, TX, USA. joann.moulds@grifols.com
Dr Nuria Nogues: Banc de Sang i Teixits, Barcelona, Spain. nnogues@bst.cat
Prof Dr Martin L Olsson: Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden. Martin.L.Olsson@med.lu.se
Dr. Thierry Peyrard, Institut National de la Transfusion Sanguine, Département Centre National de Référence pour les Groupes Sanguins, Paris, France. tpeyrard@ints.fr
Prof Dr C Ellen van der Schoot: Sanquin Research at CLB, Amsterdam, The Netherlands. e.vanderschoot@sanquin.nl
Dr Yoshihiko Tani: Japanese Red Cross Kinki Block Blood Center, Ibaraki-shi Osaka, Japan. y-tani@kk.bbc.jrc.or.jp
Ms Nicole Thornton: International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK. nicole.thornton@nhsbt.nhs.uk
Dr Franz Wagner, Red Cross Blood Service NSTOB, Springe, Germany. fwagner@bsd-nstob.de
Dr Silvano Wendel: Blood Bank, Hospital Sirio-Libanes, São Paulo, Brazil. snwendel@terra.com.br
Dr Connie M Westhoff: New York Blood Center, New York, NY, USA. cwesthoff@nybloodcenter.org
Dr Vered Yahalom: NBGRL Magen David Adom, Ramat Gan, Israel. veredy@mda.org.il.