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IMMUNOLOGY

Multiplexed high-throughput immune cell imaging
reveals molecular health-associated phenotypes

Yannik Severin', Benjamin D. Hale', Julien Mena', David Goslings?,

Beat M. Frey?, Berend Snijder'*

Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not fully understood.
Here, we comprehensively analyze immune cell phenotypes including morphology across human cohorts by
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single-round multiplexed immunofluorescence, automated microscopy, and deep learning. Using the uncertainty
of convolutional neural networks to cluster the phenotypes of eight distinct immune cell subsets, we find that the
resulting maps are influenced by donor age, gender, and blood pressure, revealing distinct polarization and
activation-associated phenotypes across immune cell classes. We further associate T cell morphology to transcrip-
tional state based on their joint donor variability and validate an inflammation-associated polarized T cell
morphology and an age-associated loss of mitochondria in CD4* T cells. Together, we show that immune cell
phenotypes reflect both molecular and personal health information, opening new perspectives into the deep

immune phenotyping of individual people in health and disease.

INTRODUCTION

The morphology of a cell closely reflects its state, as it adapts to
dynamic functional requirements and thereby constrains future be-
havior (1-4). This feedback mechanism has been shown to influ-
ence many cellular events, including cell differentiation (5, 6), cell
division (2, 7, 8), adaptation to the microenvironment (9-11), and
malignant transformation (12, 13). Few differentiated healthy
human cells change their phenotype as markedly as immune cells: a
plasticity that is critical to the correct function of the immune sys-
tem as a whole (14-16). As a consequence, studying immune cellular
heterogeneity at the molecular level has been transformative for our
understanding of the immune system, measured, for example, by
flow cytometry (17, 18), single-cell mass cytometry (19, 20), and
single-cell RNA sequencing (RNA-seq) (21-25). Complementary to
these molecular measurements, microscopy has shown the importance
of immune cell morphology in multiple settings: Distinct cellular
morphologies are associated with, and influence the outcome of,
monocyte polarization (26, 27) and T and B cell activation (28-33),
and label-free imaging of hematopoietic cells has enabled predict-
ing the outcome of future lineage choices (34). In addition, a recent
study, using organelle marker abundance as a proxy for cell mor-
phology, found extensive evidence for morphological heterogeneity
in both healthy and diseased immune cells (35). Because of their
mixed adherent nature, however, primary immune cells such as
peripheral blood mononuclear cells (PBMCs) were long considered
incompatible with automated fluorescence microscopy, the tool of
choice to characterize cellular morphology with spatial resolution
across millions of cells (4, 9, 11, 36-39). This has hampered the
comprehensive measurement and study of morphological hetero-
geneity present in the immune system and thus has left unanswered
the question of which molecular and health factors globally shape
the compendium of human immune cell morphologies.
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RESULTS

Deep learning enables accurate eight-class cell type
classification on multiplexed immunofluorescence and
automated microscopy of human immune cells

To be able to comprehensively measure immune cell phenotypes,
we developed a multiplexed immunofluorescence approach for
PBMC:s that extends our previously developed protocol for high-
throughput image-based screening in human biopsies compatible
with mixed nonadherent cells (Fig. 1) (40-42). In contrast to previ-
ously reported cyclical multiplexed immunofluorescence protocols
(43-45), we stain once with a comprehensive immune cell marker
panel that multiplexes eight surface markers and a nuclear dye,
which is imaged by automated confocal microscopy and bright-field
imaging in a single run (Fig. 1i and table S1). A deep convolutional
neural network (CNN) (46) with custom architecture (fig. S1A) was
subsequently used to classify each cell, making use of distinct marker
expression patterns, lineage-specific labeling encoded by the staining
panel, and likely differences in immune cell morphology (Fig. 1i).
The CNN was trained across eight immune cell classes, using 89,483
manually curated five-channel subimages (four fluorescent channels
and one bright-field channel) centered on individual cells sampled
from 15 healthy donors (available at https://doi.org/10.3929/
ethz-b-000343106). The eight immune classes capture the predom-
inant immune lineages present in PBMCs, including three distinct
T cell subsets (CD4", CD8", and CD4~CD8~), monocytes, dendritic
cells, natural killer (NK) cells, B cells, and nucleated immune cells
negative for all eight surface markers (Fig. 1).

CNN performance was stable across retraining, showed no sign
of overfitting, and was 97% accurate for unseen donors systemati-
cally left out of the training data (fig. S1, B and C). The network
further achieved 97.7% classification accuracy (Fig. 1ii) on a previ-
ously unseen test dataset of 24,000 curated cells comprising PBMCs
from the same 15 healthy donors (fig. S1D). The classification effi-
ciently demultiplexed mixed marker signals in the same fluorescence
channel (fig. S1E), such that the resulting abundances of each sub-
population matched our expectations (fig. S1F). Both the class fractions
(fig. S1G) and class probabilities (fig. SIH) showed good reproduc-
ibility over different experimental replicates [median correlation
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Fig. 1. Deep learning-enabled multiplexed immunofluorescence and microscopy of human immune cells. Workflow for the single-round multiplexed immunofluorescence,
image-based screening, and associated deep learning-based classification of human PBMCs. PBMCs of healthy human donors are seeded in 384-well plates, optionally containing
drugs orimmune stimuli. Cells are fixed and stained with a comprehensive antibody panel (i) and imaged by automated confocal microscopy. A CNN is trained on 89,483 manually
curated subimages to distinguish eight differentimmune cell classes and subsequently classifies all cells in the experiment. The curated test set contains 100 cells per class per
donor per staining condition. (ii) Confusion matrix of CNN performance across all 24,000 cells that the CNN did not see before. CONV, convolution; RELU, rectified linear unit.

coefficient (r) = 0.90 and 0.95, respectively]. While marker expression
likely contributed toward the accurate classification of morpholog-
ically similar classes (such as CD4* and CD8" T cells), cell morphology
likely contributed to the separation of distinct cell types whose
markers were multiplexed in the same channel. For example, CD14"
monocytes and CD3" T cells, both stained in the allophycocyanin
(APC) channel (fig. S1E), showed separation in cell size and staining
pattern (fig. S1I). Supporting this interpretation, retraining the
eight-class CNN without 4’,6-diamidino-2-phenylindole (DAPI)
and bright-field channels significantly reduced the classification
accuracy (P < 0.05; fig. S1J); in addition, inversely, a two-class CNN
could separate T cells and monocytes with 95% accuracy based on
the DAPI and bright-field channels alone (fig. S1K). Last, we evaluated
withholding all morphological information from a neural network
classifier, by training an eight-class fully connected neural network
classifier on the mean channel intensities per cell. This resulted in a
classification accuracy of 86.2%, considerably lower than that of the
CNN (fig. S1L). Thus, the eight-class CNN learned to generalize
and leverage immune phenotypes across individual donors and
experiments, presenting a robust, efficient, and data-rich high-
throughput screening strategy with broad applicability.

Neural network uncertainty clusters immune

cell phenotypes

Both supervised and unsupervised deep learning algorithms are in-
creasingly used for image clustering (47, 48), which we here explored
for the purpose of clustering immune cell phenotypes. The CNN
returns a confidence vector for each cell that creates an eight-
dimensional feature space, which we visualized by ¢-distributed
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stochastic neighbor embedding (+-SNE) (Fig. 2A) (49). To minimize
possible batch effects and confounding factors from ex vivo culturing,
we analyzed a subset of 10 of the 15 donors on which the CNN was
trained, whose blood had been simultaneously processed and incu-
bated for just 1 hour before fixing and imaging across replicate wells
and plates. Visualization of unperturbed immune cells from these
10 donors suggested considerable cell-to-cell variability, particularly
among monocytes, even just within the cells classified with high CNN
confidence (>0.7 class probability) (Fig. 2A). Projecting molecular
and morphological cell features measured by conventional image
analysis on the t-SNE revealed that the CNN had separated mono-
cytes on the basis of their CD16 and CD11c expression levels, although
it was not trained explicitly to do so (Fig. 2A, inset). Moreover, this
showed that, even for high-confidence cells, the CNN class proba-
bilities reflected marker expression and morphological heterogeneity
for all eight immune cell classes, with nuclear size and bright-field
intensity differences observed within each class (Fig. 2, A and B).
Thus, while the eight-class CNN was strictly trained in a supervised
manner, its neural network uncertainty additionally allowed further
grouping of previously unannotated cellular phenotypes, capturing
recurrent phenotypes present in primary human immune cells.

We next tested whether this deep learning uncertainty could also
be used to quantify and categorize extrinsically induced changes in
immune cell phenotypes. To this end, we stimulated PBMCs with
nine immune modulators and three distinct controls ex vivo across
concentrations and replicates, measuring 5 million multiplexed
stained and imaged PBMCs (table S2). To avoid a possible bias from
functional differences between immune cells from different donors,
all cells were sampled from a single additional donor.
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Fig. 2. Phenotypic landscape of the unperturbed immune system across 10 healthy donors. (A) t-SNE of the eight-class CNN probabilities of up to 1000 randomly
subsampled high-confidence multiplexed cells per class and per donor (class probability > 0.7). Monocytes are further divided into three subpopulations by thresholding
the immunofluorescence (IF) intensity of CD16 and CD11c stainings, respectively (inset). Figure depicts a total of 78,850 cells, randomly sampled from 40 wells for each of
the 10 donors. All donors were processed and measured together in a single experiment, across 40 replicate wells per donor distributed over two 384-well plates.
(B) Selected single-cell features projected onto the t-SNE shown in (A). Median value of overlapping data points is calculated, and color is assigned accordingly. Points are

plotted in order of intensity, with the lowest intensity on top.

First, we visualized the structure in the CNN confidence by t-SNE
(Fig. 3A), equally sampling cells from across all eight classes and
12 conditions. This revealed monocytes to be divided into three
clusters associated with distinct CNN confidence profiles, not trivially
explained by marker expression differences (fig. S2, A to C). To
identify the contribution of distinct immune modulators to the
morphological landscape of immune cells, we developed a method
called k-nearest neighbor (KNN) local enrichment analysis (LEA)
by hypergeometric testing (Fig. 3B and Material and Methods). For
each cell, LEA identifies the nearest neighbors in the original eight-class
probability space and calculates the hypergeometric significance of
enrichment for cells with a certain property in this neighborhood.
LEA next assigns this significance back to the original starting cell
(see data file S1 for an example of this analysis). Projecting the LEA
results back on the t-SNE revealed that the monocyte subcluster
with the lowest CNN confidence was enriched for monocytes exposed
to M1-type-inducing agents, Escherichia coli lipopolysaccharides
(LPSs) and granulocyte-macrophage colony-stimulating factor
(GM-CSF) (Fig. 3C and fig. S2D) (50), or to cytotoxic agents, causing
the release of danger-associated molecular patterns. The second
monocyte cluster was strongly enriched for cells exposed to M2-
type—associated dexamethasone or interleukin-4 (IL-4), while the
third and highest-confidence monocyte cluster was not enriched for
most perturbations, thus likely reflecting unperturbed monocyte
phenotypes (Fig. 3D).

Stimulation with microbial compounds such as LPS can selectively
alter immune cell cross-talk, for example, through the induction of
cell-cell contacts. We therefore suspected that phenotypes in the
M1-type cluster could, in part, reflect changes in the multicellular
context. To verify this, we performed spatially resolved single-cell
analysis across the eight classified immune cell types, allowing the
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high-throughput screening of 36 distinct immune cell-cell interac-
tions simultaneously, a significant increase compared to our previous
nonmultiplexed efforts (fig. S3, A and B) (40). Analysis of all 43 million
cell-cell interactions measured in this experiment (fig. S3A) confirmed
the M1-like monocyte cluster to be enriched for monocyte-to-monocyte
interactions (fig. S3C). Thus, LPS-mediated monocyte activation
led to distinct M1-like monocyte phenotypes, defined, in part, by an
altered multicellular context. Collectively, LEA revealed that the
uncertainty of the deep neural network reconstituted previously
established monocyte M1/M2-type polarization phenotypes in a
fully unsupervised manner (Fig. 3), while exposing considerably
phenotypic complexity, with most immunomodulatory perturbations
simultaneously affecting the phenotype of multiple immune cell
class (Fig. 3A and fig. S2D).

Immune cell phenotypes associate with personal

health information

The phenotypic heterogeneity of circulating immune cells captured
by our image-based measurements could reflect both genetic and
nongenetic influences (15, 51). To explore this, we analyzed com-
monalities and differences in the unperturbed immune phenotypes
across the discovery cohort of the 10 donors shown in Fig. 2. We
first used LEA to measure enrichment of cells from the same donor
in the nearest-neighborhood in the eight-dimensional CNN class
probability space. This identified distinct cellular phenotype regions
significantly enriched for each of the 10 donors across several
immune cell classes (Fig. 4A). As these enriched phenotypes were
measured across technical repeats, they not only potentially indicated
donor-individual characteristics of immune cell morphologies but
could also reflect batch effects acting upstream of our sample
processing and imaging. Repeating the analysis with randomized
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Fig. 3. Phenotypic landscape of a perturbed immune system and LEA analysis. (A) The CNN class probability t-SNE on the left shows 600 randomly chosen cells per
class and condition; colored by class. (B) Overview of the LEA workflow. LEA probes the KNNs of each single cell in a multidimensional space for enrichment of either
continuous or discrete features. For discrete features, the probability of finding n cells of condition X in the probed neighborhood follows a hypergeometric distribution,
from which an enrichment P value is calculated. For continuous features, the relative fraction of cells of each donor in the probed local neighborhood is calculated. These
fractions are then rank-correlated with a continuous feature that was measured across donors, and the P value of the correlation is calculated. In both cases, the enrich-
ment probability is assigned to the center cell, and the approach is iterated for each single cell in the analysis. (C) Bar graph depicting the sum total logio(LEA P values) for
selected perturbations in the M1 (black) and M2 (gray) monocyte clusters. (D) LEA reveals regions in the phenotypic space that are significantly enriched for dexamethasone-
treated PBMCs. Cells in the t-SNE are colored by their enrichment significance of the LEA run [~logio(Pagjust); see color bar]. Inset highlights the contribution of different

perturbations to the selected M2-type monocyte cluster. Figure depicts a total of 199,375 cells, randomly sampled from across 240 wells for a single donor.

donor labels and comparing the sum of enrichments showed that
the actual donor enrichment in nearest neighbors of the latent space
was well above what would be expected by random (P < 1.1 x 107%,;
Fig. 4A, inset). We next looked for phenotypes that were enriched
in donors with the same biological gender, with the 10 donors in-
cluding 4 women and 6 men. This revealed strong gender associa-
tions with various immune cell morphologies (P < 1.1 x 107°%;
Fig. 4B), with NK and negative cell class phenotypes particularly
enriched in female donors and not explained by enrichment in any
individual female donor (fig. S4A).

We next explored immune phenotype associations with continuous
health parameters such as donor age, which has been described to
markedly alter the immune phenotypic landscape (Figs. 3B and 4C
and Material and Methods) (52, 53). A modification of LEA for
continuous variables calculates the significance of the rank correlation
between the fraction of cells per donor in the nearest neighborhood
and any continuous variable of each donor (Fig. 3B). As before, the
LEA analysis was run in the eight-dimensional CNN class probability
space. To correct for spurious associations, we compare the associ-
ation strength with those observed in many repeats with the same
health parameter randomized across the donors. Testing donor age,
height, weight, body mass index, blood pressure, and hemoglobin

Severin et al., Sci. Adv. 8, eabn5631 (2022) 2 November 2022

levels revealed significant associations with donor age (P < 1.3 x 10™%)
and systolic blood pressure (P < 4.5 x 10”% Fig. 4C) but not to any
of the other measured health parameters. The age-associated pheno-
type map revealed bimodal age associations for several immune
subpopulations, particularly notable for CD4" T cells (Fig. 4D).
Across the cells that make up the phenotype map, the age associa-
tions were mutually exclusive of the single-donor enrichments
(r=-0.002; fig. S4B).

Donor variability allows to link T cell phenotypes with bulk
gene expression data

To investigate the above identified phenotypic and health associa-
tions, we next used LEA to associate molecular pathway expression
as measured by transcriptomics with immune cell phenotypes.
Focusing on T cells, we performed bulk RNA-seq of CD3-positive
cells isolated from the same 10 healthy donor blood samples, detecting
on average around 15,000 expressed transcripts (fig. S5A). To asso-
ciate bulk transcript measurements with single-cell imaging data,
we first randomly subsampled 10,000 imaged T cells per donor,
irrespective of their subpopulations (T0, T4, and T8). This random
subsampling was performed to reflect the composition of isolated
bulk T cells on which RNA-seq was performed. We then correlated
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Fig. 4. LEA associates immune cell phenotypes with personal health information. (A) LEA of donor-specific cells across 10 donors, visualized on the t-SNE of
Fig. 2A. The cells are colored by their maximum LEA significance across the 10 donors [~logo(Padjust); see color bar). Inset: A randomized null distribution of donor enrichments
was generated by randomizing the donor labels 2000 times and summing up all single-cell enrichments calculated by LEA per randomized run (gray bars). Sum enrich-
ment of the actual data is shown in red, and the significance compared to the randomized runs is calculated by a one-sided t test. (B) LEA of biological gender-specific
phenotypes projected onto the t-SNE. Cells are colored by their significant enrichment in female (blue) or male (green) specific phenotypes. Inset: A null distribution of
random gender enrichment (gray) was generated by randomizing the donor labels 2000 times and summing up all single-cell enrichments calculated by LEA. Sum
enrichment of the actual data is shown in red, as in Fig. 3A. (C) Association analysis of various health parameters with cellular phenotypes calculated by LEA. Null distribu-
tions of random correlation significance (gray) were generated by randomizing the donor labels 2000 times and summing up the all single-cell enrichments calculated by
LEA per randomized run. Enrichment of the actual data is shown in red (one-sided t test). n.s., not significant. (D) LEA age associations projected onto the t-SNE. Single
cells are colored by their signed significance of correlation [-logqo(P) * sign of the correlation; see color bar]. Inset: Fraction of all significantly positive and negative age-

associated CD4" T cells with donor age (P < 0.05).

the local phenotype abundance in the eight-dimensional CNN class
probability space with the bulk transcript measurement using
LEA across donors (Fig. 5A). To benchmark these phenotype-to-
transcriptome associations, we first compared the LEA associations
of CD4 and CD8A transcript abundance (Fig. 5A) with the CD4 and
CD8 protein expression levels explicitly measured by immunofluo-
rescence for each T cell (fig. S5B). Validating the approach, LEA
achieved excellent results for these proof-of-concept benchmarks,
with areas under the receiver operating curve of 0.93 and 0.89 for
CD4- and CD8-positive cells, respectively (Fig. 5B).

We next sought to validate these pathway-phenotype associations
by querying the associations the other way round: starting from
well-known pathways and seeing what phenotypes are associated
with it. To this end, we inspected the associations with the T cell

Severin et al., Sci. Adv. 8, eabn5631 (2022) 2 November 2022

receptor (TCR) signaling pathway as proxy for T cell activation.
TCR signaling was strongly associated with distinct subregions of
the phenotype map, including the cluster periphery of CD8" T cells
(Fig. 5C). This pattern was recapitulated by the LEA associations
with MAPKI (ERK2), part of the TCR-induced signaling cascade,
which largely, but not exclusively, overlapped with regions enriched
for cells from donor 2 (Fig. 5C). Visual inspection of cells residing
in TCR signaling and MAPK]I-associated phenotypic regions revealed
a notable polarized and activated T cell morphology, henceforth
referred to as Tacr cells. In contrast, randomly sampled cells from
adjacent and nonenriched regions contained conventional small and
round T cell morphologies, which we refer to as Tcox cells (Fig. 5D).
To robustly quantify the Tacr morphology further, we trained a
dedicated CNN on manually curated Tacr and Tcon phenotypes,
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Fig. 5. Discovery and validation of an activated T cell morphology. (A) t-SNE of the CNN class probabilities of T cells from 10 healthy donors. A total of 10,000 T cells
were randomly selected across all T cell populations per donor (without confidence threshold) to reflect their original abundance in the respective sample. t-SNE colored
per T cell class (left), by LEA-based associations with CD8A transcript abundance (middle), or CD4 transcript abundance (right) [-log;o(P) * correlation sign]. (B) Area under
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associations with CD4 levels by immunofluorescence (right). (C) LEA associations of TCR signaling (left), MAPK1 transcript abundance (middle), and donor enriched
regions (right; Pagjust < 0.05 colored per donor) projected on the t-SNE map. (D) Representative CD8" T cells from the positively MAPK1-associated regions (Tact) and con-
ventional CD8* T cells of other regions (Tcon). Yellow, CD3; blue, DAPI. (E) Confusion matrix of the Tacr classifier. Test set comprises 369 random Tacr cells and 738 random
Tcon cells across multiple donors (including the 10 depicted donors). (F) LEA of the Tact phenotype projected on the t-SNE map. (G) Distribution of pathway significance
across all retroactively classified Tacr morphologies. Pathway enrichments were calculated using a hypergeometric test on positively associated genes (0.95 percentile),
and P values were corrected for multiple testing. (H) Induction and suppression of the Tact phenotype with immunomodulatory agents across an independent validation
cohort of 15 individual donors. Compounds were screened at 100 ng/ml. Box plots show the mean relative fraction of Tact of all T cells across all wells of each condition
per donor. (I) Immunofluorescence quantification of phospho-nuclear factor kB (pNFxB) and phospho-extracellular signal-regulated kinase (pERK) levels in Tact and
Tcon cells. Box plots show the fraction of phospho-signaling positive Tacr (red) and Tcon (blue) cells after 48 hours of incubation with SEB or control (n = 3). Representative
Tact and Tcon cell morphologies shown. Scale bars, 10 um. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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which achieved 94.6% validation accuracy on images from donors
and experiments that it was not trained on (Fig. 5E and fig. S5C).
This allowed us to retroactively detect the T ycr morphology for all
imaged T cells, which confirmed that the phenotype was present in
all donors and most enriched in the cells of donor 2 (Fig. 5F and fig.
S5D). Coming full circle, the T scr enriched regions associated with
tumor necrosis factor (TNF) and mitogen-activated protein kinase
(MAPK) signaling as most enriched pathways after multiple testing
correction (Fig. 5G).

Validation of the inflammation-associated T cell morphology
(Tact) inan independent donor cohort

To confirm that the Tact morphology is associated with inflamma-
tion and T cell activation in an independent validation cohort, we
stimulated PBMCs derived from 15 additional healthy donors with
proinflammatory cytokine IL-2, superantigen Staphylococcus aureus
enterotoxin B (SEB), or LPS, which all led to significant increases in
the fraction of T cells adopting a T act morphology (Fig. 5H and fig.
S5E). Exposure to the anti-inflammatory synthetic glucocorticoid
dexamethasone, in contrast, reduced the relative abundance of
Tacr cells across the 15 donors (Fig. 5H and fig. S5E). To rule out
the possibility that the Tycr morphology was induced by cellular
fixation before imaging, we further conducted live cell imaging of
SEB-stimulated PBMCs and visually confirmed the induction of the
Tacr cell phenotype (fig. S5F). We next measured by immunofluo-
rescence the levels of phosphorylated nuclear factor kB (NF«B)
(Ser®®) and extracellular signal-regulated kinase (ERK) (Thr**? and
Tyr’™) as a function of T cell morphology, at baseline and upon
SEB stimulation in PBMCs. At baseline, Tacr cells showed slightly
but significantly higher levels of phosphorylated ERK. SEB stimula-
tion increased phosphorylated levels of ERK significantly higher in
Tacr than Tcoy cells. Together, these results experimentally validated
the LEA-based pathway enrichment analysis with the polarized
Tacr morphology. Thus, part of the donor unique fingerprints that
we previously observed had resulted from differences in T cell acti-
vation between the donors, with 15% of T cells from donor 2 adopting
the Tacr morphology, predominantly in CD8" T cell compartment,
while on the other end of the spectrum, only 7% of donor 1 T cells
were Tacr cells, here mostly in CD4" T cells (fig. S5D).

Deep learning uncertainty reveals an age-associated
mitochondrial decline in CD4" T cells

Having validated the phenotype-to-pathway association approach
and its ability to find and correctly describe new cellular pheno-
types, we explored the pathway enrichments for age-associated
T cell phenotypes (Fig. 6A and fig. S6A). Pathways enriched in
phenotypes that were reduced with age included nucleotide exci-
sion repair, telomere maintenance (54), cilia assembly (55), and
propanoate metabolism (fig. S6A). In contrast, pathways associated
with T cell phenotypes that increased with age included inflammation-
and stress-related pathways, particularly for the CD8* compart-
ment, and lysosome- and vesicle-associated pathways in CD4"
T cells (Fig. 6A, right). Inflammation is a well-described risk factor
for age-associated diseases (56), and, consistently, the age-associated
phenotypes overlapped partially with the above validated pheno-
type for activated CD8" T cells (Fig. 6A, right). Furthermore, im-
paired organelle and lysosome homeostasis in aged CD4" T cells
has been previously described as a relevant process in aging of
T cells (57).
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Pathway enrichments for oxidative phosphorylation and mito-
chondrial respiration in age-associated T cell phenotypes were in
line with reports of defective respiration in CD4" T cells of aged mice
(58, 59) and suggested that the neural network might have identified a
phenotypic T cell signature associated with both donor age and
mitochondrial abundance. The CD4" T cells showed strong bright-
field intensity differences, a measure of intracellular granularity
(Fig. 2, A and B, and fig. S5B). This bright-field trend followed
the age associations that we observed, with CD4" T cells enriched in
younger people measured to be more granular (referred to as T4grp
for “bright-field dark” CD4" T cells; Figs. 2, A and B, and 4C).
Quantifying this association across all subpopulations, CD4" T cells
showed the most significant age-associated bright-field intensity
differences (P < 107"%), followed by the CD8" T cells (P < 107%%), and
less for the other immune cell classes (Fig. 6B).

To reproduce this association, we sampled an additional valida-
tion cohort of 15 healthy donors (Fig. 6C) and trained a different
neural network architecture on a new set of images generated only
from this validation cohort (fig. S6B). This independent repetition
of the workflow revealed that the age-associated T4ppp phenotype
was independent of the donor cohort and neural network and ex-
perimental batch (Fig. 6C and fig. S6B). The age-associated bright-
field intensity differences and mitochondrial pathway association
might reflect loss of mitochondrial abundance in age in CD4" T cells
(60). To support this interpretation, we analyzed whether bright-
field intensity reflects mitochondrial abundance using the natural
heterogeneity observed within CD4" T cells of a single donor
(Fig. 6D). Those cells that were darkest by bright-field imaging dis-
played significantly higher mitochondrial abundance as measured
by image-based quantification of the MitoTracker dye (Fig. 6D).
The deep learning uncertainty thus had revealed a label-free pheno-
type reflecting an age-associated mitochondrial decline in CD4"
T cells, explaining, in part, how immune cell phenotypes measured
by our high-throughput single-cell imaging pipeline capture donor
information such as age.

DISCUSSION

We here explore the molecular health determinants of human im-
mune cell phenotypes using a workflow that combines automated
high-throughput microscopy, single-round multiplexed immuno-
fluorescence, and deep learning-based phenotypic analysis. The
presented method for phenotyping of immune cells distinguishes
itself for its ability to integrate cell morphology, protein levels and
localization, and multicellular context into a quantitative metric
across eight major immune cell classes, hundreds of conditions, and
millions of cells. The resulting single-cell phenotype space, derived
from the CNN’s uncertainty, reflected both genetic and nongenetic
donor health information. We find age, gender, blood pressure, and
inflammatory state to be significantly associated with human
immune cell phenotypes, yet many more influences likely exist
and more phenotype associations captured by our approach remain
unexplored.

Our workflow is tailored to make use of two large sources of bi-
ological heterogeneity: the heterogeneity observed between individ-
uals, and heterogeneity observed within cells of the same class and
donor. That dependency, however, is at the same time its limitation:
The single-round multiplexed staining strategy benefits from the
presence of multiple cell types with variable cell morphologies and
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marker profiles, and LEA requires donor or condition heterogeneity
to power its associations. Furthermore, while the marker panel
shown here reliably captures the predominant immune cell classes
present in PBMCs, it does not resolve certain smaller subpopulations,
such as NK T cells (61). However, the approach is flexible as the
panel composition can readily be tailored to the identification of
additional subpopulations or adapted to different tissues, building
on the same logic developed here.

This is not the first work that deploys CNN-based cell classifica-
tion (62-70) and feature extraction (63, 65, 69, 71). Here, we apply
deep learning in high-throughput screening and phenotypic analy-
ses of primary human PBMCs. By training the CNN on curated cells
from across independent experiments, multiple donors, and conven-
tional and multiplexed staining panels, we could prevent overfitting
on phenotypes of single donors and technical bias stemming from
experimental conditions. However, the CNN class probability space,
which we here successfully use as a phenotype discovery tool, is sen-
sitive to different phenotypes resulting from different experimental
conditions. Hence, while CNN classification can be trained to be ro-
bust, experimental care needs to be taken when interpreting the CNN
class probability space.

Once new phenotypes are found, as we demonstrate for the
inflammation-associated Tscr cell morphology, the ability to retro-
actively reclassify cells based on their morphology with dedicated
CNNss allows robust morphological subclassification of previously
imaged cells even in the absence of tailored marker panels. Attest-
ing to the robustness of the found phenotypes, the inflammation-
associated Tycr and age-associated T4gpp phenotypes could be
validated in independent experiments, in an independent validation
cohort, using distinct neural network architectures, and, for the
T act morphology, in both live-cell and fixed sample imaging.

In the future, repeated profiling of individual donors will allow
to further stratify temporally stable from dynamic immune cell
phenotypes. Furthermore, comparative studies across larger patient
and donor cohorts, as well as identifying clinically relevant cell
morphologies in the context of personalized treatment identification
for hematological malignancies (41, 42), will be additionally attrac-
tive avenues of study. This will inevitably define the boundaries of
the personal health information reflected by immune cell pheno-
types. Given that the workflow allows simultaneous phenotype
discovery combined with the molecular and personal health associ-
ations, it is well positioned to lead to the discovery of more as yet
undescribed and clinically relevant immune cell phenotypes.

MATERIALS AND METHODS

Experimental model

Buffy coats or whole blood tubes were obtained from coded healthy
donors provided by the Blutspende Ziirich, under a study protocol
approved by the Cantonal Ethics Committee, Ziirich (KEK Ziirich,
BASEC-Nr 2019-01579). Detailed donor information can be found
in table S3.

Experimental details

Collection and purification of human PBMCs

Healthy donor buffy coats or blood samples were diluted 1:1 in
phosphate-buffered saline (PBS; Gibco), and PBMCs were isolated
with a Histopaque-1077 density gradient (Sigma-Aldrich) accord-
ing to the manufacturer’s instructions. PBMCs at the interface
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were collected, washed once in PBS, and resuspended in medium.
In all experiments, immune cells were cultured in RPMI 1640 and
GlutaMAX medium (Gibco) supplemented with 10% fetal bovine
serum (FBS; Gibco) and incubated at 37°C with 5% CO,. Cell
number and viability were determined using a Countess II Cell
Counter from Thermo Fisher Scientific according to the manufac-
turer’s instructions.

Nonadherent PBMC monolayer formation and drug screening
and cell fixation

In the proof-of-concept drug screen, 5 pul of a selected screening
compounds (10x stock) and all respective controls (as outlined in
table S2) were transferred to CellCarrier 384 Ultra, clear-bottom,
tissue culture-treated plates (PerkinElmer) with five replicates per
condition. All conditions were screened in four concentrations:
cytokines (0.1, 1, 10, and 100 ng/ml), rituximab (0.05, 0.1, 0.5, and
1 pg/ml), LPS (0.1, 1, 10, and 100 ng/ml), dexamethasone (0.4, 4, 40,
and 400 ng/ml), and crizotinib (0.01, 0.1, 1, and 10 uM). Fifty micro-
liters of medium containing approximately 4 x 10° cells/ml was
pipetted into each well of a 384-well compound plate, and cells were
allowed to settle to the bottom. The whole blood samples of the dis-
covery cohort (shown in Figs. 2, A and B, and 4 to 6) were incubated
for 1 hour, whereas all buffy coat samples, including all samples
from the validation cohort (Figs. 5H and 6C), were incubated for
24 hours. All assays were terminated by fixing and permeabilizing
the cells with 20 ul of a solution containing 0.5% (w/v) formaldehyde
(Sigma-Aldrich), 0.05% (v/v) Triton X-100 (Sigma-Aldrich), 10 mM
sodium(meta)periodate (Sigma-Aldrich), and 75 mM L-lysine mono-
hydrochloride (Sigma-Aldrich), for 20 min at room temperature.
For MitoTracker staining (Thermo Fisher Scientific), cells were
stained live with 500 nM MitoTracker Red, before fixation. Fixative-
containing medium was subsequently removed, and cells were
blocked and photobleached in 5% FBS/PBS overnight at 4°C. Photo-
bleaching was used to reduce background fluorescence and was
performed by illuminating the fixed cells with conventional white
light light-emitting diode panels.

Immunostaining and imaging

All fluorescent primary antibodies used in this work (outlined in
table S1) were used at a 1:300 dilution in PBS. All antibody cocktails
for immunohistochemistry (IHC) contained 6 uM DAPI (Sigma-
Aldrich) for nuclear detection. Before THC staining, the blocking
solution was removed, and 20 ul of the antibody cocktail was added
per well and incubated for 1 hour at room temperature. Besides fully
multiplexed wells, each plate additionally contained several staining
control wells with a reduced number of antibodies (table S1). The
staining control wells served for evaluating antibody functionality
and the generation of the CNN training data (see below). For imaging,
a PerkinElmer Opera Phenix automated spinning disk confocal micro-
scope was used. Each well of a 384-well plate was imaged at x20 mag-
nification with 5 x 5 nonoverlapping images, covering the whole
well surface. The images were taken sequentially from the bright-
field (650 to 760 nm), DAPI/nuclear signal (435 to 480 nm), green
fluorescent protein/green signal (500 to 550 nm), phycoerythrin/
orange signal (570 to 630 nm), and APC/red signal (650 to 760 nm)
channels. Subsequently, the raw .tiff images were transferred from
the microscope for further analysis.

Conventional image analysis and quality filtering

Cell detection and single-cell image analysis were performed using
CellProfiler v2 (72). Nuclear segmentation was performed via thresh-
olding on DAPI intensity. Cellular outlines were estimated by a

90of 13

GZ0Z ‘YT 4800100 U0 BI080US 105" MMM//:SANY WO.J PaPE0 lUMOC



SCIENCE ADVANCES | RESEARCH ARTICLE

circular expansion from the outlines of the nucleus. In addition, a
second and larger expansion from the nuclei was performed to
measure the local area around each single cell (local cellular back-
ground). Standard CellProfiler-based intensity, shape, and texture
features of the nucleus and cytoplasm and the local cell proximity
were extracted for each measured channel. Raw fluorescent intensities
were log)o-transformed and normalized toward the local cellular
background as described by Vladimer et al. (40).

Convolutional neural networks

CNN s used in this work were implemented using MATLAB’s Neural
Network Toolbox version R2020a. The curated dataset used in
training, validation, and testing of the CNN framework contains
images of cells from fully multiplexed stainings and images from
staining controls. Staining controls were designed to contain only a
subset of the antibodies used in the multiplexed setting (table S1).
This reduced complexity first enables to evaluate the functionality
of the selected antibody and the presence of the targeted antigen in
each sample. Furthermore, antibody combinations in the staining
controls were picked to mirror the staining of the selected subpop-
ulation in the multiplexed setting (e.g., staining control 1 only
contained antibodies marking T cell-specific antigens; T cells in the
multiplexed setting will have the same staining pattern). The same
staining patterns in the controls and the mostly nonoverlapping
emission spectra of the chosen antibodies allow an easy, marker
intensity-based identification of subpopulations. This facilitates a
fast and unbiased selection of training examples. For the generation
of single-cell images, the center of each cell was determined by its
nuclear staining via the software CellProfiler (see above). Around
each nuclei center, a 50-pixel by 50-pixel (or 39.5-um by 39.5-um)
wide subimage was generated across all five measured channels.
Single-cell subimages were then manually annotated and sorted
for their respective class using custom MATLAB scripts. For train-
ing and validation of the discovery cohort CNN, a dataset of
89,483 cells was manually annotated (containing both multi-
plexed and control staining cells). In the separate test datasets, each
donor-associated set is independently split in multiplexed and con-
trol staining cells, resulting in a total of 30 independent test datasets
with each 100 cells per class. This test setup allows inferring the
network performance toward each donor, experiment, and staining
type independently.

In discovery cohort (10 donors), a 17-layer-deep CNN with an
adapted “AlexNet” architecture (73) with 50-pixel by 50-pixel and
five-channel input images was used. Before training, the labeled
eight-class dataset was randomly split in a training set containing
90% and a validation set with the remaining 10% of all images.
Network layer weights and biases were initialized randomly before
the CNN network was trained. Networks were trained up to 20 epochs
with a mini batch size of 512 images. The learning rate was fixed to
0.0001. To avoid overfitting, L2 regularization with 0.005 was applied.
Furthermore, in each iteration, input images were randomly rotated
in 45° steps with an additional possibility to be also flipped vertically
or horizontally. Performance of the trained networked was tested
on the separate test sets of staining control and multiplexed images
of all 15 donors. Stochastic gradient descent with momentum of
0.9 is defined as the optimization algorithm. Last, we trained 20 differ-
ently initialized networks with differently split training and validation
sets. For the final classification of the complete unlabeled dataset,
the best performing network was used. As in the generation of the
labeled dataset, 50-pixel by 50-pixel subimages around each nuclei
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center were generated. Cells closer than 25 pixels to the border of an
image were excluded from classification.

In validation cohort (15 donors), a 71-layer-deep CNN with
an adapted ResNet architecture (74) with 48-pixel by 48-pixel and
five-channel input images was used. Before classification and training,
all intensity values were first log;o-transformed and then channel
wise-normalized to a range of 0 to 1. The eight-class CNN was
trained using randomly initialized weights and biases and the adap-
tive learning rate optimization “ADAM.” The network was trained
for 20 epochs with an initial learning rate of 0.001, which was dropped
every 5 epochs with a factor of 0.1. Furthermore, a mini batch size
of 512 images and L2 regularization with 0.001 was applied. To
further strengthen generalization, input images were augmented in
each iteration. Here, images were randomly rotated in 45° steps
with an additional possibility to be also flipped vertically or hori-
zontally. To block an overreliance on absolute intensity values,
channel intensity shifts were simulated via a multiplication with a
random fixed factor. This used factor was randomly drawn out of a
normal distribution with a mean of 1 and an SD of 0.2. Furthermore,
images were augmented with random noise (specifically salt and
pepper noise, speckle noise, Gaussian noise, or image blurring). In
all CNN classifications, 48-pixel by 48-pixel subimages around each
nuclei center were generated. Cells closer than 24 pixels to the
border of an image were excluded from all classifications.

In label-free Tcr classier, CNNs and single-cell images were
generated as described above. The labeled training and validation
dataset comprised a total of 8862 cells (1:2 Tacr:Tcon ratio). CNNs
were trained with a mini-batch size of 200 images to a maximum of
100 epochs, which could be terminated if validation loss was greater
than the previous smallest loss for five consecutive times. In addi-
tion, the images were randomly rotated by 45° and mirrored vertically
or horizontally per iteration to limit orientation bias toward polar-
ized Tacr cells. The CNN performance was assessed by classifying
1107 test cells (1:2 Tacr:Tcon ratio) that had neither been used in
CNN training nor in validation.

RNA sequencing

In T cell isolation and RNA extraction, T cells were isolated from
fresh PBMC:s directly after obtaining them via density centrifugation,
as described above. Isolation was performed via a column-based
extraction method with CD3 Microbeads as described in the manu-
facturer’s instructions (Miltenyi Biotec). RNA extraction of the iso-
lated cells was performed with a Quick-RNA MiniPrep Kit by Zymo
according to manufacturer’s instructions.

RNA-seq was performed by the Functional Genomics Center
Ziirich. Briefly, cDNA libraries were obtained according to protocols
published by Picelli et al. (75). Illumina library was obtained via
tagmentation using the Illumina Nextera Kit. All samples were
sequenced in a single run on a NovaSeq 6000 (single read, 100 base
pairs, depth of 20 Mio reads per sample).

In data processing and normalization, Illumina adapters, sequences
of poor quality, as well as polyadenine (polyA) and polythymine (polyT)
sequences were removed from the raw reads using TrimGalore v.0.6.0
with cutadapt v.2.0 before alignment. Reads were then aligned to the
human reference genome GRCh38, v93 (Ensembl) using STAR v.
2.5.3a. Reads per gene were counted using the ~quantMode Gene-
Counts flag in STAR. Gene counts below a threshold of 20 raw counts
were filtered, and raw counts were normalized [DESeq2 (76)]. Only
transcripts annotated as “protein coding” or “long noncoding RNA”
were considered in the subsequent analysis.
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Statistical analysis

If not stated otherwise, all significance scores were calculated on the
basis of a two-tailed Student’s ¢ test with mean of 0. Asterisks in
figures indicate significance per condition, compared with controls.
P value less than 0.05 is flagged with one asterisk (¥), P value less
than 0.01 is flagged with two asterisks (**), and all P values with less
than 0.001 are flagged with three asterisks (**¥).

For cell-cell interaction analysis, a simplified version of the
interaction method by Vladimer et al. (40) was used. Here, cell-cell
interaction analysis was conducted over all different image sites
within the same well. Cells were scored as interacting if their nuclear
centroids were within a Euclidean distance of 40 pixels. To calculate
the interaction score of a cell with type A interacting with a cell of
type B, we first calculated specific interactions and total interactions
per well. We define specific interactions, as the total count of “B” cells
within the defined radius around a cell of type “A.” Total interac-
tions are considered as the total count of all interacting cells in that
well. To calculate the final interaction score, specific interactions
were divided by the product of (the fraction of type A cells of all cells) x
(the fraction of type B cells of all cells) x total interactions. In con-
trast to the previously published method, this approach is simplified
as the interactions scores are nondirected, which reduces the number
of edges from 72 to 36. Mean interaction score over all replicates
was calculated, log,-transformed, and normalized toward its respec-
tive control (see table S2).

All t-SNE visualizations were calculated on the -log;o(class
probability matrices). In the £-SNE calculation, a Mahalanobis dis-
tance metric, a perplexity of 30, and an exaggeration parameter of
4 were applied. To reduce the calculation time, the Barnes-Hut
algorithm with a 0 value of 0.5 was used.

To calculate whether a certain condition displays local enrichment
in the eight-dimensional class probability space, we developed the
KNN LEA by hypergeometric testing or rank-based correlation. Here,
we probe the local neighborhood around each single cell, which is
defined as the KNNs in the original CNN class probability space.
For discrete variables (such as donor identity), we calculate the
probability to randomly find at least # cells of condition X in a cer-
tain neighborhood using a hypergeometric cumulative distribution
function. This takes into account the total number of cells in the
probed neighborhood, the total number of cells in the tested class
probability space, and the total number of cells of condition X. In
case of continuous variables (such as donor age or gene transcript
counts), the relative fraction of cells of each donor in the probed
local neighborhood is calculated. The fractions are then correlated
(Spearman’s rank correlation) with a continuous variable, and the
significance of the correlation is calculated. In both cases, the enrich-
ment probability is assigned to the center cell of the probed region,
and the approach is iterated for each single cell in the selected n-
dimensional space. If not stated otherwise, neighborhoods were defined
as k = 400 nearest neighbors for Figs 2 to 4 and figs. S2 to S4 and as
k =200 for the T cell for Figs. 5 and 6 and figs. S5 and S6. In general,
KNN-based algorithms, such as KNN-based classifiers, can overfit
when K is set too small or underfit when K is set too big. As a general
rule of thumb, the square root of the number of data points in the
dataset is a reasonable starting value for K. Please see data file S1 for
a full example workflow of LEA. P values were corrected for multiple
testing, i.e., by the number of total cells (i.e., tests) in the analysis.

In pathway enrichment analysis, pathway annotations were ob-
tained using the DAVID database (77). Gene enrichments per single
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cell were calculated via LEA (see above). To calculate pathway
enrichments per single cell, the LEA gene enrichments of all genes
belonging to a certain pathway annotation were compared against
the enrichment of all other genes. Significance scores were calculated
on the basis of a two-tailed Student’s ¢ test, and directionality was
calculated by the difference of the means of both populations.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn5631

View/request a protocol for this paper from Bio-protocol.
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