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I M M U N O L O G Y

Multiplexed high-throughput immune cell imaging 
reveals molecular health-associated phenotypes
Yannik Severin1, Benjamin D. Hale1, Julien Mena1, David Goslings2,  
Beat M. Frey2, Berend Snijder1*

Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not fully understood. 
Here, we comprehensively analyze immune cell phenotypes including morphology across human cohorts by 
single-round multiplexed immunofluorescence, automated microscopy, and deep learning. Using the uncertainty 
of convolutional neural networks to cluster the phenotypes of eight distinct immune cell subsets, we find that the 
resulting maps are influenced by donor age, gender, and blood pressure, revealing distinct polarization and 
activation-associated phenotypes across immune cell classes. We further associate T cell morphology to transcrip-
tional state based on their joint donor variability and validate an inflammation-associated polarized T cell 
morphology and an age-associated loss of mitochondria in CD4+ T cells. Together, we show that immune cell 
phenotypes reflect both molecular and personal health information, opening new perspectives into the deep 
immune phenotyping of individual people in health and disease.

INTRODUCTION
The morphology of a cell closely reflects its state, as it adapts to 
dynamic functional requirements and thereby constrains future be-
havior (1–4). This feedback mechanism has been shown to influ-
ence many cellular events, including cell differentiation (5, 6), cell 
division (2, 7, 8), adaptation to the microenvironment (9–11), and 
malignant transformation (12, 13). Few differentiated healthy 
human cells change their phenotype as markedly as immune cells: a 
plasticity that is critical to the correct function of the immune sys-
tem as a whole (14–16). As a consequence, studying immune cellular 
heterogeneity at the molecular level has been transformative for our 
understanding of the immune system, measured, for example, by 
flow cytometry (17, 18), single-cell mass cytometry (19, 20), and 
single-cell RNA sequencing (RNA-seq) (21–25). Complementary to 
these molecular measurements, microscopy has shown the importance 
of immune cell morphology in multiple settings: Distinct cellular 
morphologies are associated with, and influence the outcome of, 
monocyte polarization (26, 27) and T and B cell activation (28–33), 
and label-free imaging of hematopoietic cells has enabled predict-
ing the outcome of future lineage choices (34). In addition, a recent 
study, using organelle marker abundance as a proxy for cell mor-
phology, found extensive evidence for morphological heterogeneity 
in both healthy and diseased immune cells (35). Because of their 
mixed adherent nature, however, primary immune cells such as 
peripheral blood mononuclear cells (PBMCs) were long considered 
incompatible with automated fluorescence microscopy, the tool of 
choice to characterize cellular morphology with spatial resolution 
across millions of cells (4, 9, 11, 36–39). This has hampered the 
comprehensive measurement and study of morphological hetero-
geneity present in the immune system and thus has left unanswered 
the question of which molecular and health factors globally shape 
the compendium of human immune cell morphologies.

RESULTS
Deep learning enables accurate eight-class cell type 
classification on multiplexed immunofluorescence and 
automated microscopy of human immune cells
To be able to comprehensively measure immune cell phenotypes, 
we developed a multiplexed immunofluorescence approach for 
PBMCs that extends our previously developed protocol for high-
throughput image-based screening in human biopsies compatible 
with mixed nonadherent cells (Fig. 1) (40–42). In contrast to previ-
ously reported cyclical multiplexed immunofluorescence protocols 
(43–45), we stain once with a comprehensive immune cell marker 
panel that multiplexes eight surface markers and a nuclear dye, 
which is imaged by automated confocal microscopy and bright-field 
imaging in a single run (Fig. 1i and table S1). A deep convolutional 
neural network (CNN) (46) with custom architecture (fig. S1A) was 
subsequently used to classify each cell, making use of distinct marker 
expression patterns, lineage-specific labeling encoded by the staining 
panel, and likely differences in immune cell morphology (Fig. 1i). 
The CNN was trained across eight immune cell classes, using 89,483 
manually curated five-channel subimages (four fluorescent channels 
and one bright-field channel) centered on individual cells sampled 
from 15 healthy donors (available at https://doi.org/10.3929/
ethz-b-000343106). The eight immune classes capture the predom-
inant immune lineages present in PBMCs, including three distinct 
T cell subsets (CD4+, CD8+, and CD4−CD8−), monocytes, dendritic 
cells, natural killer (NK) cells, B cells, and nucleated immune cells 
negative for all eight surface markers (Fig. 1).

CNN performance was stable across retraining, showed no sign 
of overfitting, and was 97% accurate for unseen donors systemati-
cally left out of the training data (fig. S1, B and C). The network 
further achieved 97.7% classification accuracy (Fig. 1ii) on a previ-
ously unseen test dataset of 24,000 curated cells comprising PBMCs 
from the same 15 healthy donors (fig. S1D). The classification effi-
ciently demultiplexed mixed marker signals in the same fluorescence 
channel (fig. S1E), such that the resulting abundances of each sub-
population matched our expectations (fig. S1F). Both the class fractions 
(fig. S1G) and class probabilities (fig. S1H) showed good reproduc-
ibility over different experimental replicates [median correlation 
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coefficient (r) = 0.90 and 0.95, respectively]. While marker expression 
likely contributed toward the accurate classification of morpholog-
ically similar classes (such as CD4+ and CD8+ T cells), cell morphology 
likely contributed to the separation of distinct cell types whose 
markers were multiplexed in the same channel. For example, CD14+ 
monocytes and CD3+ T cells, both stained in the allophycocyanin 
(APC) channel (fig. S1E), showed separation in cell size and staining 
pattern (fig. S1I). Supporting this interpretation, retraining the 
eight-class CNN without 4′,6-diamidino-2-phenylindole (DAPI) 
and bright-field channels significantly reduced the classification 
accuracy (P < 0.05; fig. S1J); in addition, inversely, a two-class CNN 
could separate T cells and monocytes with 95% accuracy based on 
the DAPI and bright-field channels alone (fig. S1K). Last, we evaluated 
withholding all morphological information from a neural network 
classifier, by training an eight-class fully connected neural network 
classifier on the mean channel intensities per cell. This resulted in a 
classification accuracy of 86.2%, considerably lower than that of the 
CNN (fig. S1L). Thus, the eight-class CNN learned to generalize 
and leverage immune phenotypes across individual donors and 
experiments, presenting a robust, efficient, and data-rich high-
throughput screening strategy with broad applicability.

Neural network uncertainty clusters immune  
cell phenotypes
Both supervised and unsupervised deep learning algorithms are in-
creasingly used for image clustering (47, 48), which we here explored 
for the purpose of clustering immune cell phenotypes. The CNN 
returns a confidence vector for each cell that creates an eight-
dimensional feature space, which we visualized by t-distributed 

stochastic neighbor embedding (t-SNE) (Fig. 2A) (49). To minimize 
possible batch effects and confounding factors from ex vivo culturing, 
we analyzed a subset of 10 of the 15 donors on which the CNN was 
trained, whose blood had been simultaneously processed and incu-
bated for just 1 hour before fixing and imaging across replicate wells 
and plates. Visualization of unperturbed immune cells from these 
10 donors suggested considerable cell-to-cell variability, particularly 
among monocytes, even just within the cells classified with high CNN 
confidence (>0.7 class probability) (Fig. 2A). Projecting molecular 
and morphological cell features measured by conventional image 
analysis on the t-SNE revealed that the CNN had separated mono-
cytes on the basis of their CD16 and CD11c expression levels, although 
it was not trained explicitly to do so (Fig. 2A, inset). Moreover, this 
showed that, even for high-confidence cells, the CNN class proba-
bilities reflected marker expression and morphological heterogeneity 
for all eight immune cell classes, with nuclear size and bright-field 
intensity differences observed within each class (Fig. 2, A and B). 
Thus, while the eight-class CNN was strictly trained in a supervised 
manner, its neural network uncertainty additionally allowed further 
grouping of previously unannotated cellular phenotypes, capturing 
recurrent phenotypes present in primary human immune cells.

We next tested whether this deep learning uncertainty could also 
be used to quantify and categorize extrinsically induced changes in 
immune cell phenotypes. To this end, we stimulated PBMCs with 
nine immune modulators and three distinct controls ex vivo across 
concentrations and replicates, measuring 5 million multiplexed 
stained and imaged PBMCs (table S2). To avoid a possible bias from 
functional differences between immune cells from different donors, 
all cells were sampled from a single additional donor.
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Fig. 1. Deep learning–enabled multiplexed immunofluorescence and microscopy of human immune cells. Workflow for the single-round multiplexed immunofluorescence, 
image-based screening, and associated deep learning–based classification of human PBMCs. PBMCs of healthy human donors are seeded in 384-well plates, optionally containing 
drugs or immune stimuli. Cells are fixed and stained with a comprehensive antibody panel (i) and imaged by automated confocal microscopy. A CNN is trained on 89,483 manually 
curated subimages to distinguish eight different immune cell classes and subsequently classifies all cells in the experiment. The curated test set contains 100 cells per class per 
donor per staining condition. (ii) Confusion matrix of CNN performance across all 24,000 cells that the CNN did not see before. CONV, convolution; RELU, rectified linear unit.
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First, we visualized the structure in the CNN confidence by t-SNE 
(Fig. 3A), equally sampling cells from across all eight classes and 
12 conditions. This revealed monocytes to be divided into three 
clusters associated with distinct CNN confidence profiles, not trivially 
explained by marker expression differences (fig. S2, A to C). To 
identify the contribution of distinct immune modulators to the 
morphological landscape of immune cells, we developed a method 
called k-nearest neighbor (KNN) local enrichment analysis (LEA) 
by hypergeometric testing (Fig. 3B and Material and Methods). For 
each cell, LEA identifies the nearest neighbors in the original eight-class 
probability space and calculates the hypergeometric significance of 
enrichment for cells with a certain property in this neighborhood. 
LEA next assigns this significance back to the original starting cell 
(see data file S1 for an example of this analysis). Projecting the LEA 
results back on the t-SNE revealed that the monocyte subcluster 
with the lowest CNN confidence was enriched for monocytes exposed 
to M1-type–inducing agents, Escherichia coli lipopolysaccharides 
(LPSs) and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) (Fig. 3C and fig. S2D) (50), or to cytotoxic agents, causing 
the release of danger-associated molecular patterns. The second 
monocyte cluster was strongly enriched for cells exposed to M2-
type–associated dexamethasone or interleukin-4 (IL-4), while the 
third and highest-confidence monocyte cluster was not enriched for 
most perturbations, thus likely reflecting unperturbed monocyte 
phenotypes (Fig. 3D).

Stimulation with microbial compounds such as LPS can selectively 
alter immune cell cross-talk, for example, through the induction of 
cell-cell contacts. We therefore suspected that phenotypes in the 
M1-type cluster could, in part, reflect changes in the multicellular 
context. To verify this, we performed spatially resolved single-cell 
analysis across the eight classified immune cell types, allowing the 

high-throughput screening of 36 distinct immune cell-cell interac-
tions simultaneously, a significant increase compared to our previous 
nonmultiplexed efforts (fig. S3, A and B) (40). Analysis of all 43 million 
cell-cell interactions measured in this experiment (fig. S3A) confirmed 
the M1-like monocyte cluster to be enriched for monocyte-to-monocyte 
interactions (fig. S3C). Thus, LPS-mediated monocyte activation 
led to distinct M1-like monocyte phenotypes, defined, in part, by an 
altered multicellular context. Collectively, LEA revealed that the 
uncertainty of the deep neural network reconstituted previously 
established monocyte M1/M2-type polarization phenotypes in a 
fully unsupervised manner (Fig. 3), while exposing considerably 
phenotypic complexity, with most immunomodulatory perturbations 
simultaneously affecting the phenotype of multiple immune cell 
class (Fig. 3A and fig. S2D).

Immune cell phenotypes associate with personal  
health information
The phenotypic heterogeneity of circulating immune cells captured 
by our image-based measurements could reflect both genetic and 
nongenetic influences (15, 51). To explore this, we analyzed com-
monalities and differences in the unperturbed immune phenotypes 
across the discovery cohort of the 10 donors shown in Fig. 2. We 
first used LEA to measure enrichment of cells from the same donor 
in the nearest-neighborhood in the eight-dimensional CNN class 
probability space. This identified distinct cellular phenotype regions 
significantly enriched for each of the 10 donors across several 
immune cell classes (Fig. 4A). As these enriched phenotypes were 
measured across technical repeats, they not only potentially indicated 
donor-individual characteristics of immune cell morphologies but 
could also reflect batch effects acting upstream of our sample 
processing and imaging. Repeating the analysis with randomized 
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Fig. 2. Phenotypic landscape of the unperturbed immune system across 10 healthy donors. (A) t-SNE of the eight-class CNN probabilities of up to 1000 randomly 
subsampled high-confidence multiplexed cells per class and per donor (class probability > 0.7). Monocytes are further divided into three subpopulations by thresholding 
the immunofluorescence (IF) intensity of CD16 and CD11c stainings, respectively (inset). Figure depicts a total of 78,850 cells, randomly sampled from 40 wells for each of 
the 10 donors. All donors were processed and measured together in a single experiment, across 40 replicate wells per donor distributed over two 384-well plates. 
(B) Selected single-cell features projected onto the t-SNE shown in (A). Median value of overlapping data points is calculated, and color is assigned accordingly. Points are 
plotted in order of intensity, with the lowest intensity on top.
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donor labels and comparing the sum of enrichments showed that 
the actual donor enrichment in nearest neighbors of the latent space 
was well above what would be expected by random (P < 1.1 × 10−308; 
Fig. 4A, inset). We next looked for phenotypes that were enriched 
in donors with the same biological gender, with the 10 donors in-
cluding 4 women and 6 men. This revealed strong gender associa-
tions with various immune cell morphologies (P < 1.1 × 10−308; 
Fig. 4B), with NK and negative cell class phenotypes particularly 
enriched in female donors and not explained by enrichment in any 
individual female donor (fig. S4A).

We next explored immune phenotype associations with continuous 
health parameters such as donor age, which has been described to 
markedly alter the immune phenotypic landscape (Figs. 3B and 4C 
and Material and Methods) (52, 53). A modification of LEA for 
continuous variables calculates the significance of the rank correlation 
between the fraction of cells per donor in the nearest neighborhood 
and any continuous variable of each donor (Fig. 3B). As before, the 
LEA analysis was run in the eight-dimensional CNN class probability 
space. To correct for spurious associations, we compare the associ-
ation strength with those observed in many repeats with the same 
health parameter randomized across the donors. Testing donor age, 
height, weight, body mass index, blood pressure, and hemoglobin 

levels revealed significant associations with donor age (P < 1.3 × 10−9) 
and systolic blood pressure (P < 4.5 × 10−4; Fig. 4C) but not to any 
of the other measured health parameters. The age-associated pheno-
type map revealed bimodal age associations for several immune 
subpopulations, particularly notable for CD4+ T cells (Fig. 4D). 
Across the cells that make up the phenotype map, the age associa-
tions were mutually exclusive of the single-donor enrichments 
(r = −0.002; fig. S4B).

Donor variability allows to link T cell phenotypes with bulk 
gene expression data
To investigate the above identified phenotypic and health associa-
tions, we next used LEA to associate molecular pathway expression 
as measured by transcriptomics with immune cell phenotypes. 
Focusing on T cells, we performed bulk RNA-seq of CD3-positive 
cells isolated from the same 10 healthy donor blood samples, detecting 
on average around 15,000 expressed transcripts (fig. S5A). To asso-
ciate bulk transcript measurements with single-cell imaging data, 
we first randomly subsampled 10,000 imaged T cells per donor, 
irrespective of their subpopulations (T0, T4, and T8). This random 
subsampling was performed to reflect the composition of isolated 
bulk T cells on which RNA-seq was performed. We then correlated 
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the local phenotype abundance in the eight-dimensional CNN class 
probability space with the bulk transcript measurement using 
LEA across donors (Fig. 5A). To benchmark these phenotype-to-
transcriptome associations, we first compared the LEA associations 
of CD4 and CD8A transcript abundance (Fig. 5A) with the CD4 and 
CD8 protein expression levels explicitly measured by immunofluo-
rescence for each T cell (fig. S5B). Validating the approach, LEA 
achieved excellent results for these proof-of-concept benchmarks, 
with areas under the receiver operating curve of 0.93 and 0.89 for 
CD4- and CD8-positive cells, respectively (Fig. 5B).

We next sought to validate these pathway-phenotype associations 
by querying the associations the other way round: starting from 
well-known pathways and seeing what phenotypes are associated 
with it. To this end, we inspected the associations with the T cell 

receptor (TCR) signaling pathway as proxy for T cell activation. 
TCR signaling was strongly associated with distinct subregions of 
the phenotype map, including the cluster periphery of CD8+ T cells 
(Fig. 5C). This pattern was recapitulated by the LEA associations 
with MAPK1 (ERK2), part of the TCR-induced signaling cascade, 
which largely, but not exclusively, overlapped with regions enriched 
for cells from donor 2 (Fig. 5C). Visual inspection of cells residing 
in TCR signaling and MAPK1-associated phenotypic regions revealed 
a notable polarized and activated T cell morphology, henceforth 
referred to as TACT cells. In contrast, randomly sampled cells from 
adjacent and nonenriched regions contained conventional small and 
round T cell morphologies, which we refer to as TCON cells (Fig. 5D). 
To robustly quantify the TACT morphology further, we trained a 
dedicated CNN on manually curated TACT and TCON phenotypes, 
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which achieved 94.6% validation accuracy on images from donors 
and experiments that it was not trained on (Fig. 5E and fig. S5C). 
This allowed us to retroactively detect the TACT morphology for all 
imaged T cells, which confirmed that the phenotype was present in 
all donors and most enriched in the cells of donor 2 (Fig. 5F and fig. 
S5D). Coming full circle, the TACT enriched regions associated with 
tumor necrosis factor (TNF) and mitogen-activated protein kinase 
(MAPK) signaling as most enriched pathways after multiple testing 
correction (Fig. 5G).

Validation of the inflammation-associated T cell morphology 
(TACT) in an independent donor cohort
To confirm that the TACT morphology is associated with inflamma-
tion and T cell activation in an independent validation cohort, we 
stimulated PBMCs derived from 15 additional healthy donors with 
proinflammatory cytokine IL-2, superantigen Staphylococcus aureus 
enterotoxin B (SEB), or LPS, which all led to significant increases in 
the fraction of T cells adopting a TACT morphology (Fig. 5H and fig. 
S5E). Exposure to the anti-inflammatory synthetic glucocorticoid 
dexamethasone, in contrast, reduced the relative abundance of 
TACT cells across the 15 donors (Fig. 5H and fig. S5E). To rule out 
the possibility that the TACT morphology was induced by cellular 
fixation before imaging, we further conducted live cell imaging of 
SEB-stimulated PBMCs and visually confirmed the induction of the 
TACT cell phenotype (fig. S5F). We next measured by immunofluo-
rescence the levels of phosphorylated nuclear factor B (NFB) 
(Ser529) and extracellular signal–regulated kinase (ERK) (Thr202 and 
Tyr204) as a function of T cell morphology, at baseline and upon 
SEB stimulation in PBMCs. At baseline, TACT cells showed slightly 
but significantly higher levels of phosphorylated ERK. SEB stimula-
tion increased phosphorylated levels of ERK significantly higher in 
TACT than TCON cells. Together, these results experimentally validated 
the LEA-based pathway enrichment analysis with the polarized 
TACT morphology. Thus, part of the donor unique fingerprints that 
we previously observed had resulted from differences in T cell acti-
vation between the donors, with 15% of T cells from donor 2 adopting 
the TACT morphology, predominantly in CD8+ T cell compartment, 
while on the other end of the spectrum, only 7% of donor 1 T cells 
were TACT cells, here mostly in CD4+ T cells (fig. S5D).

Deep learning uncertainty reveals an age-associated 
mitochondrial decline in CD4+ T cells
Having validated the phenotype-to-pathway association approach 
and its ability to find and correctly describe new cellular pheno-
types, we explored the pathway enrichments for age-associated 
T cell phenotypes (Fig. 6A and fig. S6A). Pathways enriched in 
phenotypes that were reduced with age included nucleotide exci-
sion repair, telomere maintenance (54), cilia assembly (55), and 
propanoate metabolism (fig. S6A). In contrast, pathways associated 
with T cell phenotypes that increased with age included inflammation- 
and stress-related pathways, particularly for the CD8+ compart-
ment, and lysosome- and vesicle-associated pathways in CD4+ 
T cells (Fig. 6A, right). Inflammation is a well-described risk factor 
for age-associated diseases (56), and, consistently, the age-associated 
phenotypes overlapped partially with the above validated pheno-
type for activated CD8+ T cells (Fig. 6A, right). Furthermore, im-
paired organelle and lysosome homeostasis in aged CD4+ T cells 
has been previously described as a relevant process in aging of 
T cells (57).

Pathway enrichments for oxidative phosphorylation and mito-
chondrial respiration in age-associated T cell phenotypes were in 
line with reports of defective respiration in CD4+ T cells of aged mice 
(58, 59) and suggested that the neural network might have identified a 
phenotypic T cell signature associated with both donor age and 
mitochondrial abundance. The CD4+ T cells showed strong bright-
field intensity differences, a measure of intracellular granularity 
(Fig. 2, A and B, and fig. S5B). This bright-field trend followed 
the age associations that we observed, with CD4+ T cells enriched in 
younger people measured to be more granular (referred to as T4BFD 
for “bright-field dark” CD4+ T cells; Figs. 2, A and B, and 4C). 
Quantifying this association across all subpopulations, CD4+ T cells 
showed the most significant age-associated bright-field intensity 
differences (P < 10−70), followed by the CD8+ T cells (P < 10−40), and 
less for the other immune cell classes (Fig. 6B).

To reproduce this association, we sampled an additional valida-
tion cohort of 15 healthy donors (Fig. 6C) and trained a different 
neural network architecture on a new set of images generated only 
from this validation cohort (fig. S6B). This independent repetition 
of the workflow revealed that the age-associated T4BFD phenotype 
was independent of the donor cohort and neural network and ex-
perimental batch (Fig. 6C and fig. S6B). The age-associated bright-
field intensity differences and mitochondrial pathway association 
might reflect loss of mitochondrial abundance in age in CD4+ T cells 
(60). To support this interpretation, we analyzed whether bright-
field intensity reflects mitochondrial abundance using the natural 
heterogeneity observed within CD4+ T cells of a single donor 
(Fig. 6D). Those cells that were darkest by bright-field imaging dis-
played significantly higher mitochondrial abundance as measured 
by image-based quantification of the MitoTracker dye (Fig. 6D). 
The deep learning uncertainty thus had revealed a label-free pheno-
type reflecting an age-associated mitochondrial decline in CD4+ 
T cells, explaining, in part, how immune cell phenotypes measured 
by our high-throughput single-cell imaging pipeline capture donor 
information such as age.

DISCUSSION
We here explore the molecular health determinants of human im-
mune cell phenotypes using a workflow that combines automated 
high-throughput microscopy, single-round multiplexed immuno-
fluorescence, and deep learning–based phenotypic analysis. The 
presented method for phenotyping of immune cells distinguishes 
itself for its ability to integrate cell morphology, protein levels and 
localization, and multicellular context into a quantitative metric 
across eight major immune cell classes, hundreds of conditions, and 
millions of cells. The resulting single-cell phenotype space, derived 
from the CNN’s uncertainty, reflected both genetic and nongenetic 
donor health information. We find age, gender, blood pressure, and 
inflammatory state to be significantly associated with human 
immune cell phenotypes, yet many more influences likely exist 
and more phenotype associations captured by our approach remain 
unexplored.

Our workflow is tailored to make use of two large sources of bi-
ological heterogeneity: the heterogeneity observed between individ-
uals, and heterogeneity observed within cells of the same class and 
donor. That dependency, however, is at the same time its limitation: 
The single-round multiplexed staining strategy benefits from the 
presence of multiple cell types with variable cell morphologies and 
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bins of bright-field intensity within each well. Mean and SDs across 10 repeat wells with a combined total of n = 78,095 CD4+ T cells are shown. P values are from a 
two-tailed t test of all replicate wells per bin against those of the brightest bright-field (right most) bin. ***P < 0.001.
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marker profiles, and LEA requires donor or condition heterogeneity 
to power its associations. Furthermore, while the marker panel 
shown here reliably captures the predominant immune cell classes 
present in PBMCs, it does not resolve certain smaller subpopulations, 
such as NK T cells (61). However, the approach is flexible as the 
panel composition can readily be tailored to the identification of 
additional subpopulations or adapted to different tissues, building 
on the same logic developed here.

This is not the first work that deploys CNN-based cell classifica-
tion (62–70) and feature extraction (63, 65, 69, 71). Here, we apply 
deep learning in high-throughput screening and phenotypic analy-
ses of primary human PBMCs. By training the CNN on curated cells 
from across independent experiments, multiple donors, and conven-
tional and multiplexed staining panels, we could prevent overfitting 
on phenotypes of single donors and technical bias stemming from 
experimental conditions. However, the CNN class probability space, 
which we here successfully use as a phenotype discovery tool, is sen-
sitive to different phenotypes resulting from different experimental 
conditions. Hence, while CNN classification can be trained to be ro-
bust, experimental care needs to be taken when interpreting the CNN 
class probability space.

Once new phenotypes are found, as we demonstrate for the 
inflammation-associated TACT cell morphology, the ability to retro-
actively reclassify cells based on their morphology with dedicated 
CNNs allows robust morphological subclassification of previously 
imaged cells even in the absence of tailored marker panels. Attest-
ing to the robustness of the found phenotypes, the inflammation-
associated TACT and age-associated T4BFD phenotypes could be 
validated in independent experiments, in an independent validation 
cohort, using distinct neural network architectures, and, for the 
TACT morphology, in both live-cell and fixed sample imaging.

In the future, repeated profiling of individual donors will allow 
to further stratify temporally stable from dynamic immune cell 
phenotypes. Furthermore, comparative studies across larger patient 
and donor cohorts, as well as identifying clinically relevant cell 
morphologies in the context of personalized treatment identification 
for hematological malignancies (41, 42), will be additionally attrac-
tive avenues of study. This will inevitably define the boundaries of 
the personal health information reflected by immune cell pheno-
types. Given that the workflow allows simultaneous phenotype 
discovery combined with the molecular and personal health associ-
ations, it is well positioned to lead to the discovery of more as yet 
undescribed and clinically relevant immune cell phenotypes.

MATERIALS AND METHODS
Experimental model
Buffy coats or whole blood tubes were obtained from coded healthy 
donors provided by the Blutspende Zürich, under a study protocol 
approved by the Cantonal Ethics Committee, Zürich (KEK Zürich, 
BASEC-Nr 2019-01579). Detailed donor information can be found 
in table S3.

Experimental details
Collection and purification of human PBMCs
Healthy donor buffy coats or blood samples were diluted 1:1  in 
phosphate-buffered saline (PBS; Gibco), and PBMCs were isolated 
with a Histopaque-1077 density gradient (Sigma-Aldrich) accord-
ing to the manufacturer’s instructions. PBMCs at the interface 

were collected, washed once in PBS, and resuspended in medium. 
In all experiments, immune cells were cultured in RPMI 1640 and 
GlutaMAX medium (Gibco) supplemented with 10% fetal bovine 
serum (FBS; Gibco) and incubated at 37°C with 5% CO2. Cell 
number and viability were determined using a Countess II Cell 
Counter from Thermo Fisher Scientific according to the manufac-
turer’s instructions.
Nonadherent PBMC monolayer formation and drug screening 
and cell fixation
In the proof-of-concept drug screen, 5 l of a selected screening 
compounds (10× stock) and all respective controls (as outlined in 
table S2) were transferred to CellCarrier 384 Ultra, clear-bottom, 
tissue culture–treated plates (PerkinElmer) with five replicates per 
condition. All conditions were screened in four concentrations: 
cytokines (0.1, 1, 10, and 100 ng/ml), rituximab (0.05, 0.1, 0.5, and 
1 g/ml), LPS (0.1, 1, 10, and 100 ng/ml), dexamethasone (0.4, 4, 40, 
and 400 ng/ml), and crizotinib (0.01, 0.1, 1, and 10 M). Fifty micro-
liters of medium containing approximately 4 × 105 cells/ml was 
pipetted into each well of a 384-well compound plate, and cells were 
allowed to settle to the bottom. The whole blood samples of the dis-
covery cohort (shown in Figs. 2, A and B, and 4 to 6) were incubated 
for 1 hour, whereas all buffy coat samples, including all samples 
from the validation cohort (Figs. 5H and 6C), were incubated for 
24 hours. All assays were terminated by fixing and permeabilizing 
the cells with 20 l of a solution containing 0.5% (w/v) formaldehyde 
(Sigma-Aldrich), 0.05% (v/v) Triton X-100 (Sigma-Aldrich), 10 mM 
sodium(meta)periodate (Sigma-Aldrich), and 75 mM l-lysine mono-
hydrochloride (Sigma-Aldrich), for 20 min at room temperature. 
For MitoTracker staining (Thermo Fisher Scientific), cells were 
stained live with 500 nM MitoTracker Red, before fixation. Fixative-
containing medium was subsequently removed, and cells were 
blocked and photobleached in 5% FBS/PBS overnight at 4°C. Photo-
bleaching was used to reduce background fluorescence and was 
performed by illuminating the fixed cells with conventional white 
light light-emitting diode panels.
Immunostaining and imaging
All fluorescent primary antibodies used in this work (outlined in 
table S1) were used at a 1:300 dilution in PBS. All antibody cocktails 
for immunohistochemistry (IHC) contained 6 M DAPI (Sigma-
Aldrich) for nuclear detection. Before IHC staining, the blocking 
solution was removed, and 20 l of the antibody cocktail was added 
per well and incubated for 1 hour at room temperature. Besides fully 
multiplexed wells, each plate additionally contained several staining 
control wells with a reduced number of antibodies (table S1). The 
staining control wells served for evaluating antibody functionality 
and the generation of the CNN training data (see below). For imaging, 
a PerkinElmer Opera Phenix automated spinning disk confocal micro-
scope was used. Each well of a 384-well plate was imaged at ×20 mag-
nification with 5 × 5 nonoverlapping images, covering the whole 
well surface. The images were taken sequentially from the bright-
field (650 to 760 nm), DAPI/nuclear signal (435 to 480 nm), green 
fluorescent protein/green signal (500 to 550 nm), phycoerythrin/
orange signal (570 to 630 nm), and APC/red signal (650 to 760 nm) 
channels. Subsequently, the raw .tiff images were transferred from 
the microscope for further analysis.
Conventional image analysis and quality filtering
Cell detection and single-cell image analysis were performed using 
CellProfiler v2 (72). Nuclear segmentation was performed via thresh-
olding on DAPI intensity. Cellular outlines were estimated by a 
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circular expansion from the outlines of the nucleus. In addition, a 
second and larger expansion from the nuclei was performed to 
measure the local area around each single cell (local cellular back-
ground). Standard CellProfiler-based intensity, shape, and texture 
features of the nucleus and cytoplasm and the local cell proximity 
were extracted for each measured channel. Raw fluorescent intensities 
were log10-transformed and normalized toward the local cellular 
background as described by Vladimer et al. (40).
Convolutional neural networks
CNNs used in this work were implemented using MATLAB’s Neural 
Network Toolbox version R2020a. The curated dataset used in 
training, validation, and testing of the CNN framework contains 
images of cells from fully multiplexed stainings and images from 
staining controls. Staining controls were designed to contain only a 
subset of the antibodies used in the multiplexed setting (table S1). 
This reduced complexity first enables to evaluate the functionality 
of the selected antibody and the presence of the targeted antigen in 
each sample. Furthermore, antibody combinations in the staining 
controls were picked to mirror the staining of the selected subpop-
ulation in the multiplexed setting (e.g., staining control 1 only 
contained antibodies marking T cell–specific antigens; T cells in the 
multiplexed setting will have the same staining pattern). The same 
staining patterns in the controls and the mostly nonoverlapping 
emission spectra of the chosen antibodies allow an easy, marker 
intensity–based identification of subpopulations. This facilitates a 
fast and unbiased selection of training examples. For the generation 
of single-cell images, the center of each cell was determined by its 
nuclear staining via the software CellProfiler (see above). Around 
each nuclei center, a 50-pixel by 50-pixel (or 39.5-m by 39.5-m) 
wide subimage was generated across all five measured channels. 
Single-cell subimages were then manually annotated and sorted 
for their respective class using custom MATLAB scripts. For train-
ing and validation of the discovery cohort CNN, a dataset of 
89,483 cells was manually annotated (containing both multi-
plexed and control staining cells). In the separate test datasets, each 
donor-associated set is independently split in multiplexed and con-
trol staining cells, resulting in a total of 30 independent test datasets 
with each 100 cells per class. This test setup allows inferring the 
network performance toward each donor, experiment, and staining 
type independently.

In discovery cohort (10 donors), a 17-layer-deep CNN with an 
adapted “AlexNet” architecture (73) with 50-pixel by 50-pixel and 
five-channel input images was used. Before training, the labeled 
eight-class dataset was randomly split in a training set containing 
90% and a validation set with the remaining 10% of all images. 
Network layer weights and biases were initialized randomly before 
the CNN network was trained. Networks were trained up to 20 epochs 
with a mini batch size of 512 images. The learning rate was fixed to 
0.0001. To avoid overfitting, L2 regularization with 0.005 was applied. 
Furthermore, in each iteration, input images were randomly rotated 
in 45° steps with an additional possibility to be also flipped vertically 
or horizontally. Performance of the trained networked was tested 
on the separate test sets of staining control and multiplexed images 
of all 15 donors. Stochastic gradient descent with momentum of 
0.9 is defined as the optimization algorithm. Last, we trained 20 differ-
ently initialized networks with differently split training and validation 
sets. For the final classification of the complete unlabeled dataset, 
the best performing network was used. As in the generation of the 
labeled dataset, 50-pixel by 50-pixel subimages around each nuclei 

center were generated. Cells closer than 25 pixels to the border of an 
image were excluded from classification.

In validation cohort (15 donors), a 71-layer-deep CNN with 
an adapted ResNet architecture (74) with 48-pixel by 48-pixel and 
five-channel input images was used. Before classification and training, 
all intensity values were first log10-transformed and then channel 
wise–normalized to a range of 0 to 1. The eight-class CNN was 
trained using randomly initialized weights and biases and the adap-
tive learning rate optimization “ADAM.” The network was trained 
for 20 epochs with an initial learning rate of 0.001, which was dropped 
every 5 epochs with a factor of 0.1. Furthermore, a mini batch size 
of 512 images and L2 regularization with 0.001 was applied. To 
further strengthen generalization, input images were augmented in 
each iteration. Here, images were randomly rotated in 45° steps 
with an additional possibility to be also flipped vertically or hori-
zontally. To block an overreliance on absolute intensity values, 
channel intensity shifts were simulated via a multiplication with a 
random fixed factor. This used factor was randomly drawn out of a 
normal distribution with a mean of 1 and an SD of 0.2. Furthermore, 
images were augmented with random noise (specifically salt and 
pepper noise, speckle noise, Gaussian noise, or image blurring). In 
all CNN classifications, 48-pixel by 48-pixel subimages around each 
nuclei center were generated. Cells closer than 24 pixels to the 
border of an image were excluded from all classifications.

In label-free TACT classier, CNNs and single-cell images were 
generated as described above. The labeled training and validation 
dataset comprised a total of 8862 cells (1:2 TACT:TCON ratio). CNNs 
were trained with a mini-batch size of 200 images to a maximum of 
100 epochs, which could be terminated if validation loss was greater 
than the previous smallest loss for five consecutive times. In addi-
tion, the images were randomly rotated by 45° and mirrored vertically 
or horizontally per iteration to limit orientation bias toward polar-
ized TACT cells. The CNN performance was assessed by classifying 
1107 test cells (1:2 TACT:TCON ratio) that had neither been used in 
CNN training nor in validation.
RNA sequencing
In T cell isolation and RNA extraction, T cells were isolated from 
fresh PBMCs directly after obtaining them via density centrifugation, 
as described above. Isolation was performed via a column-based 
extraction method with CD3 Microbeads as described in the manu-
facturer’s instructions (Miltenyi Biotec). RNA extraction of the iso-
lated cells was performed with a Quick-RNA MiniPrep Kit by Zymo 
according to manufacturer’s instructions.

RNA-seq was performed by the Functional Genomics Center 
Zürich. Briefly, cDNA libraries were obtained according to protocols 
published by Picelli et al. (75). Illumina library was obtained via 
tagmentation using the Illumina Nextera Kit. All samples were 
sequenced in a single run on a NovaSeq 6000 (single read, 100 base 
pairs, depth of 20 Mio reads per sample).

In data processing and normalization, Illumina adapters, sequences 
of poor quality, as well as polyadenine (polyA) and polythymine (polyT) 
sequences were removed from the raw reads using TrimGalore v.0.6.0 
with cutadapt v.2.0 before alignment. Reads were then aligned to the 
human reference genome GRCh38, v93 (Ensembl) using STAR v. 
2.5.3a. Reads per gene were counted using the –quantMode Gene-
Counts flag in STAR. Gene counts below a threshold of 20 raw counts 
were filtered, and raw counts were normalized [DESeq2 (76)]. Only 
transcripts annotated as “protein coding” or “long noncoding RNA” 
were considered in the subsequent analysis.
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Statistical analysis
If not stated otherwise, all significance scores were calculated on the 
basis of a two-tailed Student’s t test with mean of 0. Asterisks in 
figures indicate significance per condition, compared with controls. 
P value less than 0.05 is flagged with one asterisk (*), P value less 
than 0.01 is flagged with two asterisks (**), and all P values with less 
than 0.001 are flagged with three asterisks (***).

For cell-cell interaction analysis, a simplified version of the 
interaction method by Vladimer et al. (40) was used. Here, cell-cell 
interaction analysis was conducted over all different image sites 
within the same well. Cells were scored as interacting if their nuclear 
centroids were within a Euclidean distance of 40 pixels. To calculate 
the interaction score of a cell with type A interacting with a cell of 
type B, we first calculated specific interactions and total interactions 
per well. We define specific interactions, as the total count of “B” cells 
within the defined radius around a cell of type “A.” Total interac-
tions are considered as the total count of all interacting cells in that 
well. To calculate the final interaction score, specific interactions 
were divided by the product of (the fraction of type A cells of all cells) × 
(the fraction of type B cells of all cells) × total interactions. In con-
trast to the previously published method, this approach is simplified 
as the interactions scores are nondirected, which reduces the number 
of edges from 72 to 36. Mean interaction score over all replicates 
was calculated, log2-transformed, and normalized toward its respec-
tive control (see table S2).

All t-SNE visualizations were calculated on the –log10(class 
probability matrices). In the t-SNE calculation, a Mahalanobis dis-
tance metric, a perplexity of 30, and an exaggeration parameter of 
4 were applied. To reduce the calculation time, the Barnes-Hut 
algorithm with a θ value of 0.5 was used.

To calculate whether a certain condition displays local enrichment 
in the eight-dimensional class probability space, we developed the 
KNN LEA by hypergeometric testing or rank-based correlation. Here, 
we probe the local neighborhood around each single cell, which is 
defined as the KNNs in the original CNN class probability space. 
For discrete variables (such as donor identity), we calculate the 
probability to randomly find at least n cells of condition X in a cer-
tain neighborhood using a hypergeometric cumulative distribution 
function. This takes into account the total number of cells in the 
probed neighborhood, the total number of cells in the tested class 
probability space, and the total number of cells of condition X. In 
case of continuous variables (such as donor age or gene transcript 
counts), the relative fraction of cells of each donor in the probed 
local neighborhood is calculated. The fractions are then correlated 
(Spearman’s rank correlation) with a continuous variable, and the 
significance of the correlation is calculated. In both cases, the enrich-
ment probability is assigned to the center cell of the probed region, 
and the approach is iterated for each single cell in the selected n-
dimensional space. If not stated otherwise, neighborhoods were defined 
as k = 400 nearest neighbors for Figs 2 to 4 and figs. S2 to S4 and as 
k = 200 for the T cell for Figs. 5 and 6 and figs. S5 and S6. In general, 
KNN-based algorithms, such as KNN-based classifiers, can overfit 
when K is set too small or underfit when K is set too big. As a general 
rule of thumb, the square root of the number of data points in the 
dataset is a reasonable starting value for K. Please see data file S1 for 
a full example workflow of LEA. P values were corrected for multiple 
testing, i.e., by the number of total cells (i.e., tests) in the analysis.

In pathway enrichment analysis, pathway annotations were ob-
tained using the DAVID database (77). Gene enrichments per single 

cell were calculated via LEA (see above). To calculate pathway 
enrichments per single cell, the LEA gene enrichments of all genes 
belonging to a certain pathway annotation were compared against 
the enrichment of all other genes. Significance scores were calculated 
on the basis of a two-tailed Student’s t test, and directionality was 
calculated by the difference of the means of both populations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn5631

View/request a protocol for this paper from Bio-protocol.
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