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Summary

The GYPC gene encodes the glycophorins C and D. The two moieties
express 12 known antigens of the Gerbich blood group system and
functionally stabilize red blood cell membranes through their intracellular
interaction with protein 4.1 and p55. Three GYPC exon deletions are
responsible for the lack of the high-frequency antigens Ge2 (Yus type, exon
2 deletion), Ge2 and Ge3 (Gerbich type, exon 3 deletion), and Ge2 to 4
(Leach type, exons 3 and 4 deletion), but lack exact molecular descrip-
tion. A total of 29 rare blood samples with Yus (GE:-2,3,4) and Gerbich
(GE:-2,-3,4) phenotypes, including individuals of Middle-Eastern, North-
African or Balkan ancestry were examined genetically. All phenotypes could
be explained by 4 different Yus alleles, characterized by deletions of exon 2
and adjacent introns, and 3 different Gerbich alleles, with deletions of exon
3 and adjacent introns. A 3600 base pair GYPC region, encompassing exon
2 and flanking region, shares a high degree of sequence homology with a
region flanking exon 3, probably representing an evolutionary duplication
event. Defining the expression of Gerbich variants presently relies on rare
serological reagents. Our approach substitutes the serological characteriza-
tion with a precise genotype approach to identify the rare Yus and Gerbich
alleles.

Keywords: blood groups, red cell
transfusion medicine, immunogenetics, molecular genetics.

antigens, immunohaematology,

Antigens of the Gerbich blood group system are the result of
the expression of the integral membrane sialoglycoproteins
glycophorin C (GPC) and glycophorin D (GPD). These gly-
cophorins are important in the maintenance of the red blood
cell (RBC) plasma membrane structure through their interac-
tion with protein 4.1 and p55, which links GPC and GPD to
spectrin and actin (Alloisio et al, 1993; Marfatia et al, 1994).
Both proteins result from the expression of one single gene,
GYPC (Le Van Kim et al, 1987), with GPD representing a
21 N-terminal amino acid truncated version of GPC and
encoded through an alternate transcription mechanism (Tan-
ner, 1988; El-Maliki et al, 1989; Le Van Kim et al, 1996).
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The GYPC gene is comprised of 4 exons and spans approxi-
mately 48 kilobases on the long arm of chromosome 2.
Unlike multi-cistronic blood group system loci, like RHD/
RHCE and GYPA/GYPB/GYPE that are subject to a signifi-
cant antigen diversity due to intergenic recombination events
(Wagner & Flegel, 2014; Meyer et al, 2016), GYPC has no
homologous gene and it shares little similarity with GYPA,
GYPB and GYPE. It shows an alternate start codon resulting
in the expression of GPD sialoglycoproteins (Cartron et al,
1990). Exons 2 and 3 of GYPC and their flanking regions of
approximately 3600 base pairs share 95% identity (Fig 1),
suggesting that the exon organization originally arose from a
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Fig 1. Schematic representation of GYPC and its two homologous repeat regions (light grey and black blocks). The deletions found in the Yus
and Gerbich alleles are depicted as dashed lines. Diagnostic PCR-SSP products of wild-type-reactions are shown as dark grey blocks and numbered
1-8. Diagnostic gap PCRs are indicated as numbers 9-12 and 13-15, for the four Yus and three Gerbich alleles, respectively. Locations of primers

for diagnostic PCRs are indicated as arrows.

duplication event. Intragenic recombination events result in
nucleotide deletions encompassing one or more exons and,
sometimes, their flanking regions. These regions of identity
misalign during meiosis to create new alleles and conse-
quently lead to new variant proteins (for a review, see
Daniels, 2013).

The Gerbich blood group system [International Society of
Blood Transfusion (ISBT) 020] is comprised of 12 antigens;
5 low-frequency and 7 high-frequency antigens (International
Society of Blood Transfusion, 2008). There are at least 3
variants with affected GPC expression and with or without
co-expression of GPD that result in the loss of some high-
prevalence antigens (Walker & Reid, 2010). The Yus (Yussef,
GE:-2,3,4) and Gerbich (GE:-2,-3,4) phenotypes are the result
of a deletion of exon 2 (GE*01.-02) and exon 3 (GE*01.-03)
respectively. Another exceptional form, the Leach phenotype
(GE:-2,-3,-4) with a complete absence of all GPC and GPD
proteins, is due to the absence of exons 3 and 4 (GE¥0IN.01)
or a missense mutation in the exon 3 (GE*0IN.02) (Interna-
tional Society of Blood Transfusion, 2008; Daniels, 2013).
The malarial merozoite form of Plasmodium falciparum uses
GPC and GPD as a receptor to invade human RBCs (Patel
et al, 2001; Mayer et al, 2002). Therefore, variants that alter
the expression of exofacial domain probably arose from the
natural selective pressure of the negative health effects of
malaria (Maier et al, 2003). Worldwide epidemiological stud-
ies have shown that variants of the Gerbich blood group sys-
tem are observed in two major areas, Middle East/North
Africa/Balkans, and Southeast Asia/Indonesia/Papua New
Guinea. P. falciparum infestations are common in both of
these areas (Mendis et al, 2001).

Antibodies to Gerbich blood group antigens are important
to consider in transfusion and pregnancy. The antibodies
may be associated with haemolytic transfusion reactions and
haemolytic disease of the newborn. Gerbich antibodies are
particularly of clinical significance in pregnancy because they
are often associated with a late-onset anaemia (Arndt et al,

2005). The mechanism of this anaemia is similar to the one
observed with antibodies to the Kell antigens (Denomme
et al, 2006). In vitro studies have shown that antibodies to
glycophorin C inhibit growth of early erythroid progenitor
cells by inducing mitochondrial depolarization and per-
turbing intracellular phosphorylation pathways; this leads to
actin polymerization and the induction of caspase-indepen-
dent apoptosis (Micieli et al, 2010). This is consistent with
the early expression of glycophorin C on erythroid progeni-
tor cells during ontogeny. As a result, during pregnancy and
postpartum, Gerbich antibodies not only cause classical
macrophage-dependent erythroid cell destruction, but also
inhibit early erythroid progenitor cell proliferation. The
absence of reticulocytosis in haemolytic disease of the fetus
and newborn due to Gerbich maternal antibodies is consis-
tent with the effect on erythroid cell proliferation (Arndt
et al, 2005).

The anti-Gerbich antibodies are potentially clinically rele-
vant and can cause haemolytic transfusion reactions (Baughn
et al, 2011). Alloimmunization among persons with the Yus
and Gerbich phenotypes is complex. It appears that some
individuals of the Gerbich phenotype make anti-Ge3 without
anti-Ge2. Furthermore, the Gerbich phenotype (GE:-2,-3,4)
seems to present with predominantly anti-Ge2 or anti-Ge3.
However, antibodies found in the Yus phenotype (GE:-2,3,4)
consistently show an anti-Ge2 specificity. The antibodies to
the high-prevalence antigens are the most challenging to
characterize. For Gerbich, no commercial antisera are avail-
able and antibody identification relies on rare red cells and
alloantibodies shared among investigators. Sometimes these
reagents are not as they appear and errors are made in the
classification of new samples. Such antibody studies can ben-
efit from samples that are well characterized at the molecular
level to ensure identity between proband samples.

The nucleotide sequence homology between exons and
flanking regions, together with deletion variant alleles, can
make nucleotide interrogation (genotyping) for the prediction
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of blood group antigens a challenge. In addition, variation in
the location of the deletion, i.e. the specific breakpoint of the
deletion, can place the remaining information in a different
context for mRNA processing and expression. We used a col-
lection of alloimmunized individuals of the Yus and Gerbich
phenotypes to characterize their nucleotide breakpoint regions
in the corresponding GYPC alleles. We show that both the Yus
and Gerbich phenotypes result from exon deletions due to a
recombination event starting in either intron 1 (Yus pheno-
type) or intron 2 (Gerbich phenotype). Most importantly, a
small set of different deletion mutant alleles was identified for
each phenotype. We propose to classify these unique break-
point ‘deletion’ alleles using a set of ‘diagnostic’ polymerase
chain reactions to categorize the rare Yus and Gerbich pheno-
types. Precise categorization will help understand the evolu-
tion of GYPC, provide nucleotide information that may
impinge on expression, and assist with the search for similar
variants for antigen-matched transfusions.

Materials and methods

Samples

Twenty-eight blood samples with a Yus or Gerbich phenotype
from three blood transfusion services from Switzerland, Ger-
many and France were investigated. Alloimmunization to Ger-
bich (CD236) antigens, and GYPC gene structure based on
nucleotide sequencing were studied. The blood samples were
from self-identified Caucasian individuals of Middle Eastern
origin including Erythrea, Northern Africa (Maghreb area)
and the Balkan region of South-East Europe. Included in this
report is one genomic DNA sample from the Serum Cells and
Rare Fluids (SCARF) repository (Judd, 2015). Among the 28
blood samples analysed, 3 were collected in Ziirich, Switzer-
land, 5 in Baden-Baden, Germany and 20 in Paris, France.
Included in the analysis are 2 samples from Ziirich who were
parents (presumed carriers) of a Gerbich phenotype proband.
A total of 60 Gerbich alleles were analysed; 56 from blood
samples of the Yus or Gerbich phenotype, 2 of heterozygous
carrier individuals and 2 from a reference Gerbich sample of
the SCARF repository. The samples were not subject to
informed consent authorization in accordance with the ethical
committees of Switzerland. Samples from France and Ger-
many were collected as clinical samples over time and patient/
blood donor identity was protected by blinding all respective
data to all other study participants.

Phenotypic and serological investigations

Samples were tested for expression of Ge2 and Ge3. Standard
manual tube and gel techniques for the indirect antiglobulin
test were performed using sera derived from individuals pre-
viously alloimmunized from transfusion or pregnancy.
Alloimmunization to Gerbich antigens was confirmed by the
Institut National de la Transfusion Sanguine (INTS) (Paris)
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using standard reagent red cells, previously characterized Yus
and Gerbich red cells and red cells available from a cryopre-
served collection.

Positional PCR, Sanger sequencing, and diagnostic
PCR-SSP

Conventional and long-range high fidelity polymerase chain
reactions for positional PCRs (Table SIA) were designed to
evaluate genomic DNA for the presence or absence of speci-
fic sequences to locate potential GYPC nucleotide deletions.
The final reaction volume of positional PCRs (Table SI A)
and diagnostic PCRs (Table SID) was 10 pl and contained
Ready PCR Buffer (Inno-train Diagnostik GmbH, Kronberg,
Germany) and 0.4 units of AmpliTaq DNA polymerase
(Applied Biosystems, Foster City, CA, USA). PCR products
for sequencing (Table SI B) were amplified in 25-pl reactions
as described above and sequenced wusing the primers
(Table SI C) and standard Sanger sequencing procedures by
Microsynth AG (Balgach, Switzerland). Cycling conditions
for all positional PCRs and diagnostic PCRs were described
previously (Crottet et al, 2014). Cycling conditions for frag-
ments between 1500 and 2800 base pairs in size were adapted
as previously described (Gassner et al, 2005). For fragments
exceeding 4000 base pairs, the PCR Extender System from
5PRIME GmbH (Hilden, Germany) was used following the
manufacturer’s instructions. All in-house PCR procedures
were performed on either GeneAmp PCR System 9700 or the
Verity Dx automated thermocyclers (Applied Biosystems,
Thermo Fisher Scientific, Life Science Group, Zug, Switzer-
land). PCR amplicons were visualized by agarose gel elec-
trophoresis and documented by digital imaging.

PCR and BigDye Terminator sequencing (Sanger sequenc-
ing) were performed with the primers listed in Table SI B and
C to confirm deletion breakpoints. Basic Local Alignment
Search Tool (BLAST) algorithms from the National Center for
Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Bla
st.cgi) were used to identify the positions of the 2 repeat
regions within GYPC. The reference sequence NG_007479.1
was used throughout the report for nucleotide positions.
Repeat region 1 represents 3608 base pairs, from nucleotide
36979 to 40586, and repeat region 2 represents 3587 base pairs,
from nucleotide 40587 to 44173. An additional set of
sequence-specific priming (SSP) PCR assays was designed to
classify alleles (deemed ‘diagnostic PCR-SSP’) on the basis of
the deletions characterized (Table SI D). Primers and their
concentrations are given in the supplemental information.

Results

Samples analyzed

Twenty-eight samples showed lack of expression of Ge2 or
Ge3 antigens using a routine indirect antiglobulin test in the
tube and gel techniques. Alloimmunization was detected in
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Fig 2. Summary of the proportion of Yus and Gerbich deletion alleles observed in this report. The most frequent alleles are given in light grey
(Yus01, Gerbich02), the least frequent alleles are given in white (Yus02, Gerbich01). YusOI represents 66.7% of all Yus alleles observed in this study,

Gerbich02 represents 90.0% of all Gerbich alleles observed in this study.
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Fig 3. Yus and Gerbich deletion alleles aligned to sequences of the homologous GYPC repeat region 1 and 2 with the reference sequence and with
4 genomic DNA samples from individuals with wild-type GPC expression. GYPC reference sequence (NG_007479.1) spanning the repeat 1 and 2
regions is shown in the top row. The homologous GYPC repeat region 2 (black) and region 1 (grey) are aligned with their alternate homologous
regions in rows 2 and 3. Exon regions are flanked by their splice sites shown in boxes. Apart from the splicing sites, only the nucleotide positions
that differed between the 2 homologous regions are shown. Three gaps were introduced (indicated by dots) to maximize the alignments due to
the different lengths of repeat regions 1 and 2. GYPC repeat regions cover 7185 nucleotides, from 37424 to 44150. DNA from 4 Gerbich variant
samples was sequenced (second block) to identify potential common nucleotide deletions. International Union of Pure and Applied Chemistry
(IUPAC) codes were used to indicate heterozygous positions (white cells) found in 3 of 4 sequences. The span of the 4 Yus and 3 Gerbich dele-
tions (boxes with dots) are shown, with their flanking regions in grey (intron region 2) and black (intron region 3).

27 of 28 samples using either commercially available reagent
red cells or thawed-deglycerolized Yus and Gerbich red cells
from cryopreserved collections. One sample lacked informa-
tion about the specificity of the antibody (anti-Ge2 or anti-
Ge3). Two samples from parents of a proband (B-01412)
analysed in Ziirich were not alloimmunized, consistent with
their presumed Gerbich deletion allele carrier status. Anti-
Ge2 was observed in the sera of all samples with Yus deletion
alleles (Table I). Consistent with previous serological obser-
(Gourri et al, 2015), anti-Ge2 or anti-Ge3 was
demonstrated in all samples homozygous for Gerbich alleles.

vations

Anti-Ge3 was not observed among the Yus deletion alleles
(Table I).

Molecular analysis of GYPC organization

The Yus and Gerbich deletion alleles characterized in this
report are summarized in Table II. The 3 samples from
Ziirich identified 2 different deletion alleles, which we desig-
nated as YusOl and Gerbich02, and each were homozygous
for the respective deletion. The genomic deletion of the alle-
les was in line with the observed Yus or Gerbich phenotypes;

© 2017 John Wiley & Sons Ltd, British Journal of Haematology
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Table III. Summary of the proposed blood group Gerbich alleles and names.

Phenotype Phenotype Allele names Suggested allele

description description according to names according Accession

variant 1 variant 2 Trivial allele names ISBT terminology to ISBT terminology number References

wild-type GE:2,3,4 wild-type allele GE*01 unchanged NG_007479-1

Yus GE:-2,3,4 Yus01 GE*01.-02 GE*01.-02.01 LN901212 this study
Yus02 GE*01.-02.02 LN901213 this study
Yus03 GE*01.-02.03 LN901214 this study
Yus04 GE*01.-02.04 LN901215 this study

Gerbich GE:-2,-3,4 Gerbich01 GE*01.-03 GE*01.-03.01 EF434170 Scott &

Easteal, 2008

Gerbich02 GE*01.-03.02 LN901216 this study
Gerbich03 GE*01.-03.03 LN901217 this study

GETI- GE:-12 GETI negative allele GE*01.-12 unchanged LT605061 Poole, 2008

Yus0l presents a deletion of exon 2 (GenBank accession
LN901212), and Gerbich02 a deletion of exon 3 (LN901216).
The parents of proband B-01412 were carriers of the deletion
allele (Gerbich02) identified in their child. Three of the 5
samples from Baden-Baden were homozygous for either the
Yus01 or Gerbich02 alleles identified in Ziirich, as confirmed
by positional PCR and Sanger sequencing. The remaining 2
samples were compound heterozygous for 2 new deletion
alleles. One sample had 2 different Yus deletion alleles, Yus02
(LN901213) and Yus03 (LN901214), and the other sample
had the previously observed YusOI deletion allele and a new
Yus04 allele (LN901215). The 20 Paris samples represented a
collection of homozygous or compound heterozygous indi-
viduals carrying GYPC deletion alleles. Four of 20 samples
were homozygous for YusO0l (N = 3) or Yus03 (N = 1), and
9 samples were homozygous for Gerbich02 (N = 8) or a new
Gerbich03 deletion allele (N = 1) (LN901217). The remaining
7 samples represented compound heterozygotes for either
Yus (N = 3) or Gerbich (N = 1) deletion alleles, including a
previously reported GerbichO1 deletion allele (EF434170)
(Scott & Easteal, 2008), Yus plus Gerbich deletion allele
(N=2), or Yus plus a GETI-negative allele GE*01.-12
(LT605061) (N = 1) (Poole, 2008). The proportions of the
different Yus and Gerbich deletion alleles are summarized in
Fig 2. The SCARF sample was unambiguously homozygous
for the Gerbich02 deletion allele.

Characterization of GYPC deletions

Positional PCRs and targeted Sanger sequencing were used
to characterize GYPC deletions (Table SI). The location of
the Yus and Gerbich deletions were identified relative to ref-
erence sequence NG_007479.1. On the basis of nucleotide
polymorphisms between repeat region 1 and repeat region 2,
the deletion of the 4 Yus deletion alleles overlapped by 1841
base pairs (nucleotides 39108 to 40948, on NG_007479.1)
and comprised of 40 base pairs from the 3’ region of intron
1 and 1744 base pairs from the 5 region of intron 2 (Fig 3).
The deletion alleles each contained core 12-52 base pairs that
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could be assigned to either side of the breakpoint, e.g. identi-
cal sequences in either intron 1 or intron 2 and had a length
of 3609, 3610, 3611 and 3607 base pairs for YusOI to Yus04,
respectively (Table II). A similar pattern was observed for
the 3 Gerbich deletion alleles. They all have their deletions
overlapped with 2503 base pairs (40493 to 42995, on
NG_007479.1) and were comprised of 2264 base pairs from
the 3’ region of intron 2 and 155 base pairs from the 5'
region of intron 3 (Fig 3). The Gerbich deletion alleles con-
tained 23-74 base pairs that could be assigned to either
intron 2 or intron 3 and had a length of 3587, 3585 and
3585 base pairs for GerbichOl to Gerbich03, respectively
(Table II). We suggest that the ISBT Gerbich blood group
system table be updated to subcategorize the Yus and Gerbich
deletion alleles (Table IIT).

PCR-SSP for Yus and Gerbich deletion allele genotyping

A set of 15 diagnostic PCR-SSP assays were designed for the
unambiguous detection of all Yus and Gerbich deletion alle-
les. Eight diagnostic PCR-SSP assays were designed to iden-
tify the presence of specific wild-type sequences of GYPC
including exons 2, 3 and 4, and 7 PCR-SSP assays were
designed in order to be only positive for each deletion allele
(Table IV). The 15 diagnostic assays unambiguously recog-
nized all homozygous and compound heterozygous geno-
types, and made them clearly distinguishable from carriers
with a wild-type allele in all cases. Representative ethidium
bromide stained agarose gel electrophoresis images of PCR-
SSP amplified fragments are shown in Figure S1.

Discussion

GYPC is the gene responsible for the expression of both GPC
and GPD, due to an alternate start codon in exon 2. There is
a region of duplication or sequence homology between exon
2 and 3 and their flanking regions (repeat regions) of
approximately 3600 base pairs each. These regions (Fig 1)
are responsible for the emergence of exon deletion and



E. Gourri et al

| _ - + - - - ¥ + o+ + - - - - POSNK POSHX
+ — — — + — -+ + 4 + -+ + +  €0Yd1q49H €OSnx
— + - - + - -+ + o+ + -+ + + Oy €osnx
— — + — + - -+ + + + + + + + 104219425 €osnx
_ — — + + — -+ + + + - - + + POSNX [
— — - - + - -+ + o+ + - - + + €0snx €0snK
+ — — - - + - 4+ + + + - 4+ + +  €0YRrqLaD 0snx
- + - - - + - 4 + o+ + -+ + + 200D 20MX
— — + - - + -+ + + + + + + +  [0Y21q42H c0snX
_ — — + — + -+ + + + - - - + POSnX c0snx
— — - — + + -+ + o+ + - - + + €0snx osnx
_ — — — - + -+ + + + - - - + 205nX c0snX
+ — - - - - + o+ + o+ - - 4+ + +  €0yrrqRH [0snX
- + - - - - +  + + o+ - - 4+ + +  0YP1q4aH [0snX
_ _ + - - - + 4 o+ - + + + 10119490 10sn%
_ — — + — - +  + + + + - - + + yOSnX 10snX
— — — - + - + o+ + o+ + - - + + €0snx [0snX
— — — - - + + o+ + o+ + - - + + 0snx [0snX
_ — - - - - + o+ + o+ - - - + + 10s1X 10snx
+ — - - - - -+ + 4+ + + 4+ + + coyqien  addy-ppim
_ + - - - - — o+ + + o+ + + coynqin  adhi-ppm
_ — + - - - . + o+ + + o+ + +  loynqen  adhi-ppm
— — - ¥ - - - 4+ + o+ + + o+ + + posnx - addi-ppm
- — - - + - - 4 o+ + + o+ + + gosng - adhi-ppm
_ _ - - - + - o+ + o+ + + o+ + + zosng  addy-ppm
- - - - - - + o+ + o+ + + o+ + + [osnx  addy-ppm
_ _ - - - - - 4+ + o+ + + o+ + +  adfr-ppm  add1-ppm
sadAjouany
+ - - - - - - 4+ + - - -+ + + €04219425
- + - - - - -+ + - = -+ + + 20y1qeH
— — + - - - - 4+ - = - + + + + 104919425
- - - + - - -+ + o+ + - - - - POSIA
- - - - + - - 4 + o+ + - - + + €0snK
_ — — — — + - 4 + 4+ + - = — + 0snx
_ - — - - - + + + o+ - - - + + 10snx
_ — - - - - - o+ + + o+ + + addy-ppm
safoq[e 9[Surg

€0YIIqI2D  Z0Y1qID  [0YIIGHD  FOSMK  €0SMK ZOSMK [0S ¥R I0Yd1q4eD JO € €3 [0SNK JO £ €0Yd1qiD ‘Toyd1qieD JO .S T3 FOSNK TOSMX JO S FOSMX JO S

ST 4! €l 4! I8! 01 6 8 L 9 S ¥ o€ 4 I

SUOTIDBAI I8 Y21qL0D)

SUOT)OBAI J[I[[B SHL

suonoeal adLy-prrm

*SIA[[e UONR[AP Y21q400) pue sng Amuapt o) skesse paseq Surwtid oymads-souanbas Suisn YD onsouderp 10§ sodtnew uonedidiauy A d[qey,

© 2017 John Wiley & Sons Ltd, British Journal of Haematology



3
-~
-3
=
S
2SS+ o+ o+ o+
2 N
S 3
9 8
5.3
o | 2O o+ b+ o+ +
o]
= S
~ -~
-3 -8
-~ ~
~ ~
S | e O
Sl ~ 0O + o+ o+ 4+
g
2
SR+ 4+
haa)
S
@ 2
=1 e L
o
5 N
I = e e e N N
<
)
= S
2 2
o N e
<t
w v |+ + 4+ + + + + + +
-
S
-~
.8
=
V
U]
S
=]
N~w |+ + + L+ + o+
© Q|+ 4+ +
-
(=)
2
>~
S
o
" + + 4+
o«
S
-~
2
=
~
AV
U]
S
-~
B
=
~
V
U]
S
]
< in + o+ o+ 4+
o
o O+ + 4+ + + + + + +
oy
S
2
S~
S
2
- =
a Sy
.8 ©
Sl [+ 4+ + + ++ o+
&
© I
I 2
& >~
= s
Sl = |+ + + + 4+ + + + +
S 3883838888
3 TSl S S Ss=S=S=<<
N S8 8888882
= I S N e e S R S R S ISR
S NN N N N N N N s
S VOV UV VWV VvV
S CHCECVECECECEGECEG)
> 333888
- ST ST TS
U ¥ ¥ ¥ = = = = S =
= L2222
< S 3 3 ¥ Y 38 OS8 O80S
= SRS 000000

© 2017 John Wiley & Sons Ltd, British Journal of Haematology

GYPC Deletion Alleles

duplication alleles through non-homologous recombination
events. The deletion alleles are found in endemic areas of
Plasmodium falciparum including the Middle East countries
and Papua New Guinea. Glycophorin C has been shown to
bind the parasite EBA140 receptor (Maier et al, 2003). In
addition, murine embryonic stem cell studies have shown
that deletion of glycophorin C confers resistance to RBC
malaria parasite invasion (Yiangou et al, 2016). Thus, the
emergence of Gerbich variants is probably the result of selec-
tive pressure in endemic regions of Plasmodium falciparum.
Subsequently, individuals expressing GYPC variants may
become alloimmunized due to pregnancy or transfusion.

We sought to evaluate the GYPC organization of deletion
alleles of the Gerbich blood group system. The Yus pheno-
type is characterized by a deletion of exon 2 and flanking
region. Without the genetic information for the alternate
start codon, the deletion results in a truncated GPC protein
and no expression of GPD, and RBCs from Yus deletion
allele lack the Ge2 antigen. Alloimmunization to the high-
prevalence Ge2 antigen is possible. On the other hand, the
Gerbich phenotype is characterized by a deletion of exon 3
and flanking region, responsible for the GE:-2,-3,4 pheno-
type. Surprisingly, the sera of these alloimmunized individu-
als can contain either anti-Ge2 or anti-Ge3. Apparently, a
combination of both of these antibodies has not been
reported. This phenomenon might be due to the immun-
odominance of the Ge2 antigen. For the Gerbich variant,
earlier studies have shown that GPC and GPD are not pre-
sent, as predicted by the deletion construct. However a vari-
ant form of the GPC protein is being expressed (Daniels,
2013). It is not clear whether GPD.Gerbich is produced since
exon 2 of the Gerbich allele possess the alternate start codon
which could initiate the transcription of the GYPA mRNA
that results in GPD.Gerbich protein, but may not for more
than a few reasons. It is conceivable that the context of the
start codon in deletion alleles may be lost or other critical
intron sequence information might be missing. It has also
been hypothesized that the GPD.Gerbich protein produced
might not be correctly transported to the erythrocyte mem-
brane or might be unstable and quickly degraded (Colin
et al, 1989).

Our study revealed that the Yus and Gerbich deletion alle-
les are defined by breakpoints that occur before or after exon
2, respectively. However, a plethora of breakpoints may be
possible given the repetitive sequence flanking exons 2 and 3
is large. Currently, the Yus phenotype is defined by at least 4
deletion breakpoints. A similar observation is noted for the
Gerbich phenotype, defined by 3 breakpoints after exon 2
and subject to deletions that include exon 3, and conse-
quently lack the high-prevalence Ge3 antigen. Whether they
express an altered form of GPD is presently unknown, and a
subset of individuals (N = 4) had evidence of anti-Ge3
alloimmunization. The deletions associated with the Gerbich
phenotype did not provide information to explain why indi-
viduals develop predominately anti-Ge2 or anti-Ge3.
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Our set of diagnostic PCRs defined all observed Yus and
Gerbich deletion alleles and provided an innovative means to
subcategorize the respective GE:-2,3,4 and GE:-2,-3,4 rare
RBC phenotypes. It will thereby help with transfusion deci-
sions, e.g. allow the transfusion of GE:-2,-3,4 phenotype to
GE:-2,3,4 individuals, but not vice versa. The approach can
identify heterozygous (carriers) of these deletion alleles, con-
firm fetal genotypes and resolve compound heterozygotes.
Finally, the approach will prove useful in unravelling massive
parallel sequence data involving deletion alleles of the Ger-
bich blood group system.

With the necessity to understand the similarities and dif-
ferences among the GYPC deletion alleles Yus and Gerbich,
we performed extensive positional PCR sequence analysis to
identify the breakpoints. Then, we developed a set of diag-
nostic PCRs that can be used to classify both Yus and Ger-
bich phenotypic variants on the basis of their nucleotide
deletion. The Yus phenotype was defined by 4 different
breakpoints and the Gerbich phenotype by 3.

Conclusions

The extensive analysis and development of diagnostic
molecular tools to define the Gerbich blood group system
variants that lack the high-prevalence Ge2 and Ge3 antigens
provide a reliable system for categorizing these antigens.
The knowledge of the precise breakpoints for the most rep-
resented Yus and Gerbich deletion alleles presents the possi-
bility to implement a direct and reliable search for the GE:-
2,3,4 and GE:-2,-3,4 rare phenotypes in large populations
using high-throughput red cell genotyping platforms. There
is no clear distinction in the alloimmunization pattern
among the Yus and Gerbich phenotypes on the basis of
their breakpoint. However, although Gerbich phenotype
individuals do not express Ge2 and Ge3, they do not always

produce anti-Ge3 and more frequently develop anti-Ge2.
This work further supports the original notion that the
alternate start site in exon 2 is leaky (Cartron et al, 1990),
and therefore potentially subject to loss of utilization in
some deletion alleles.
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